The stock market is a non-linear field, but many of the best-known portfolio optimization algorithms are based on linear models. In recent years, the rapid development of machine learning has produced flexible models capable of complex pattern recognition. In this paper, we propose two different methods of portfolio optimization; one based on the development of a multivariate time-dependent neural network,thelongshort-termmemory(LSTM),capable of finding lon gshort-term price trends. The other is the linear Markowitz model, where we add an exponential moving average to the input price data to capture underlying trends. The input data to our neural network are daily prices, volumes and market indicators such as the volatility index (VIX).The output variables are the prices predicted for each asset the following day, which are then further processed to produce metrics such as expected returns, volatilities and prediction error to design a portfolio allocation that optimizes a custom utility function like the Sharpe Ratio. The LSTM model produced a portfolio with a return and risk that was close to the actual market conditions for the date in question, but with a high error value, indicating that our LSTM model is insufficient as a sole forecasting tool. However,the ability to predict upward and downward trends was somewhat better than expected and therefore we conclude that multiple neural network can be used as indicators, each responsible for some specific aspect of what is to be analysed, to draw a conclusion from the result. The findings also suggest that the input data should be more thoroughly considered, as the prediction accuracy is enhanced by the choice of variables and the external information used for training. / Aktiemarknaden är en icke-linjär marknad, men många av de mest kända portföljoptimerings algoritmerna är baserad på linjära modeller. Under de senaste åren har den snabba utvecklingen inom maskininlärning skapat flexibla modeller som kan extrahera information ur komplexa mönster. I det här examensarbetet föreslår vi två sätt att optimera en portfölj, ett där ett neuralt nätverk utvecklas med avseende på multivariata tidsserier och ett annat där vi använder den linjära Markowitz modellen, där vi även lägger ett exponentiellt rörligt medelvärde på prisdatan. Ingångsdatan till vårt neurala nätverk är de dagliga slutpriserna, volymerna och marknadsindikatorer som t.ex. volatilitetsindexet VIX. Utgångsvariablerna kommer vara de predikterade priserna för nästa dag, som sedan bearbetas ytterligare för att producera mätvärden såsom förväntad avkastning, volatilitet och Sharpe ratio. LSTM-modellen producerar en portfölj med avkastning och risk som ligger närmre de verkliga marknadsförhållandena, men däremot gav resultatet ett högt felvärde och det visar att vår LSTM-modell är otillräckligt för att använda som ensamt predikteringssverktyg. Med det sagt så gav det ändå en bättre prediktion när det gäller trender än vad vi antog den skulle göra. Vår slutsats är därför att man bör använda flera neurala nätverk som indikatorer, där var och en är ansvarig för någon specifikt aspekt man vill analysera, och baserat på dessa dra en slutsats. Vårt resultat tyder också på att inmatningsdatan bör övervägas mera noggrant, eftersom predikteringsnoggrannheten.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-273617 |
Date | January 2020 |
Creators | Andersson, Aron, Mirkhani, Shabnam |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2020:091 |
Page generated in 0.0024 seconds