Return to search

Attributed Multi-Relational Attention Network for Fact-checking URL Recommendation

To combat fake news, researchers mostly focused on detecting fake news and journalists built and maintained fact-checking sites (e.g., Snopes.com and Politifact.com). However, fake news dissemination has been greatly promoted by social media sites, and these fact-checking sites have not been fully utilized. To overcome these problems and complement existing methods against fake news, in this thesis, we propose a deep-learning based fact-checking URL recommender system to mitigate impact of fake news in social media sites such as Twitter and Facebook. In particular, our proposed framework consists of a multi-relational attentive module and a heterogeneous graph attention network to learn complex/semantic relationship between user-URL pairs, user-user pairs, and URL-URL pairs. Extensive experiments on a real-world dataset show that our proposed framework outperforms seven state-of-the-art recommendation models, achieving at least 3~5.3% improvement.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2320
Date11 July 2019
CreatorsYou, Di
ContributorsKyumin Lee, Advisor, Xiangnan Kong, Reader
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0021 seconds