Reversible axial flow fans are used as emergency ventilation fans to discharge the smoke generated on the probable fires occurring in the underground transportation systems and mines as quickly as possible, without causing any harm to people exposed to it. The fans which are placed in different configurations according to the location of fire must be able to work bi-directionally, namely reversible. Due to this fact, the blade profiles of the fan must possess the same aerodynamic performance while working on either discharge or suction condition of the fan, dictated by direction of the rotation.
This manuscript consists of the computation of the aerodynamic performances of symmetrical blade profiles of fully reversible axial fans by computational fluid mechanics (CFD) methods, developing a methodology for the design of reversible axial fans and analysis of the designed fan with CFD methods. The aerodynamic performances of the blade cascades are evaluated using FLUENT 6.0 software for different Reynolds numbers, solidities and angle of attacks of the cascade. The results of these computations are embedded into the developed methodology. Performance analysis of the reversible axial flow fan, which is designed with the developed methodology, is done with CFD techniques.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606116/index.pdf |
Date | 01 June 2005 |
Creators | Kokturk, Tolga |
Contributors | Eralp, Osman Cahit |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0019 seconds