Return to search

Soft Sensors for Process Monitoring of Complex Processes

Soft sensors are an essential component of process systems engineering schemes. While soft sensor design research is important, investigation into the relationships between soft sensors and other areas of advanced monitoring and control is crucial as well. This dissertation presents two new techniques that enhance the performance of fault detection and sensor network design by integration with soft sensor technology. In addition, a chapter is devoted to the investigation of the proper implementation of one of the most often used soft sensors. The performance advantages of these techniques are illustrated with several cases studies.

First, a new approach for fault detection which involves soft sensors for process monitoring is developed. The methodology presented here deals directly with the state estimates that need to be monitored. The advantage of such an approach is that the nonlinear effect of abnormal process conditions on the state variables can be directly observed. The presented technique involves a general framework for using soft sensor design and computation of the statistics that represent normal operating conditions.

Second, a method for determining the optimal placement of multiple sensors for processes described by a class of nonlinear dynamic systems is described. This approach is based upon maximizing a criterion, i.e., the determinant, applied to the empirical observability gramian in order to optimize certain properties of the process state estimates. The determinant directly accounts for redundancy of information, however, the resulting optimization problem is nontrivial to solve as it is a mixed integer nonlinear programming problem. This paper also presents a decomposition of the optimization problem such that the formulated sensor placement problem can be solved quickly and accurately on a desktop PC.

Many comparative studies, often based upon simulation results, between Extended Kalman filters (EKF) and other estimation methodologies such as Moving Horizon Estimation or Unscented Kalman Filter have been published over the last few years. However, the results returned by the EKF are affected by the algorithm used for its implementation and some implementations may lead to inaccurate results. In order to address this point, this work provides a comparison of several different algorithms for implementation.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-08-11639
Date2012 August 1900
CreatorsSerpas, Mitchell Roy
ContributorsHahn, Juergen
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0019 seconds