Return to search

Heterogeneous IoT Network Architecture Design for Age of Information Minimization

Timely data collection and execution in heterogeneous Internet of Things (IoT) networks in which different protocols and spectrum bands coexist such as WiFi, RFID, Zigbee, and LoRa, requires further investigation. This thesis studies the problem of age-of-information minimization in heterogeneous IoT networks consisting of heterogeneous IoT devices, an intermediate layer of multi-protocol mobile gateways (M-MGs) that collects and relays data from IoT objects and performs computing tasks, and heterogeneous access points (APs). A federated matching framework is presented to model the collaboration between different service providers (SPs) to deploy and share M-MGs and minimize the average weighted sum of the age-of-information and energy consumption. Further, we develop a two-level multi-protocol multi-agent actor-critic (MP-MAAC) to solve the optimization problem, where M-MGs and SPs can learn collaborative strategies through their own observations. The M-MGs' strategies include selecting IoT objects for data collection, execution, relaying, and/or offloading to SPs’ access points while SPs decide on spectrum allocation. Finally, to improve the convergence of the learning process we incorporate federated learning into the multi-agent collaborative framework. The numerical results show that our Fed-Match algorithm reduces the AoI by factor four, collects twice more packets than existing approaches, reduces the penalty by factor five when enabling relaying, and establishes design principles for the stability of the training process.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-2334
Date01 February 2023
CreatorsXia, Xiaohao
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0023 seconds