Title: Study of cooperative dislocation phenomena in solids by the acoustic emis- sion technique Author: Michal KNAPEK Department: Department of Physics of Materials Supervisor: doc. RNDr. František Chmelík, CSc., Department of Physics of Materials Abstract: Plastic deformation of micron-scale crystalline materials differs con- siderably from bulk specimens, as it is characterized by random strain bursts. Three categories of metallic samples were investigated in this thesis: micron- scale copper micropillars with varied geometries, submillimeter-scale aluminum microwires, and aluminum and aluminum-magnesium salt-replicated foams. Very precise fabrication methods and sensitive measurement set-ups consisting of uni- axial compression and tensile tests with concurrent acoustic emission (AE) record- ing were developed. These fine methods allowed for investigations of effects re- lated to plastic deformation at micrometer scales, i.e. the dislocation dynamics associated with the stress drops. Size effects in plastic deformation, as well as clear correlations between the stress drops and the AE events, were found in mi- crosamples, confirming that dislocation avalanches are indeed responsible for the stochastic character of deformation processes also at microscales. Open-cell pure aluminum and aluminum-magnesium...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:353400 |
Date | January 2016 |
Creators | Knapek, Michal |
Contributors | Chmelík, František, Haušild, Petr, Landa, Michal |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds