A Discrete Fourier Transform (DFT) changes the basis of a group algebra from the standard basis to a Fourier basis. An efficient application of a DFT is called a Fast Fourier Transform (FFT). This research pertains to a particular type of FFT called Decimation in Frequency (DIF). An efficient DIF has been established for commutative algebra; however, a successful analogue for non-commutative algebra has not been derived. However, we currently have a promising DIF algorithm for CSn called Orrison-DIF (ODIF). In this paper, I will formally introduce the ODIF and establish a bound on the operation count of the algorithm.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1202 |
Date | 01 May 2007 |
Creators | Koyama, Masanori |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Page generated in 0.0061 seconds