Return to search

Contribution aux analyses de fiabilité des transistors HEMTs GaN : exploitation conjointe du modèle physique TCAD et des stress dynamiques HF pour l'analyse des mécanismes de dégradation / Contribution to GaN HEMTs transistors reliability analyses by use of TCAD physical modeling and HF dynamic stresses

Dans la course aux développements des technologies, une révolution a été induite par l'apparition des technologies Nitrures depuis deux décennies. Ces technologies à grande bande interdite proposent en effet une combinaison unique tendant à améliorer les performances en puissance, en intégration et en bilan énergétique pour des applications hautes fréquences (bande L à bande Ka en production industrielle). Ces technologies mobilisent fortement les milieux académiques et industriels afin de proposer des améliorations notamment sur les aspects de fiabilité. Les larges efforts consentis par des consortiums industriels et académiques ont permis de mieux identifier, comprendre et maîtriser certains aspects majeurs limitant la fiabilité des composants, et ainsi favoriser la qualification de certaines filières. Cependant, la corrélation et l'analyse physique fine des mécanismes de dégradation suscite encore de nombreux questionnements, et il est indispensable de renforcer ces études par une approche d'analyse multi-outils. Nous proposons dans ce travail de thèse une stratégie d'analyse selon deux aspects majeurs. Le premier concerne la mise en œuvre d'un banc de stress qui autorise le suivi de nombreux marqueurs électriques statiques et dynamiques, sans modifier les conditions de connectiques des dispositifs sous test. Le second consiste à mettre en œuvre un modèle physique TCAD le plus représentatif de la technologie étudiée afin de calibrer le composant à différentes périodes du stress.Le premier chapitre est consacré à la présentation des principaux tests de fiabilité des HEMTs GaN, et des défauts électriques et/ou structuraux recensés dans la littérature ; il y est ainsi fait état de techniques dites non-invasives (c.-à-d. respectant l'intégrité fonctionnelle du composant sous test), et de techniques destructives (c.-à-d. n'autorisant pas de reprise de mesure). Le second chapitre présente le banc de stress à haute fréquence et thermique développé pour les besoins de cette étude ; l'adjonction d'un analyseur de réseau vectoriel commutant sur les quatre voies de tests permet de disposer de données dynamiques fréquentielles, afin d'interpréter les variations du modèle électrique petit-signal des modules sous test à différentes périodes du stress. [...] / In the race to technologies development, disruptive wide bandgap GaN devices propose challenging performances for high power and high frequency applications. These technologies strongly mobilize academic and industrial partners in order to improve both the performances and the reliability aspects. Extensive efforts have made it possible to better identify, understand and control first order degradation mechanisms limiting the lifetime of the devices; however, the correlation (and fine physical analysis) of different degradation mechanisms still raises many questions, and it is essential to strengthen these studies by mean of multi-tool analysis approach. In this thesis, we propose a twofold analysis strategy. The first aspect concerns the implementation of a stress bench that allows the monitoring of numerous static and dynamic electrical markers, without removing the devices under test from their environment (in order to have a consistent data set during the period of the strain application). The second aspect consists in implementing a physical TCAD model of the technology under study, in order to calibrate the component before stress, and to tune the model at different periods of stress (still considering stress-dependent parameters potentially affecting the device). The first chapter is devoted to the presentation of the main reliability tests of GaN HEMTs, and of the electrical and/or structural defects identified in the literature; it thus refers to so-called non-invasive techniques (i.e. respecting the functional integrity of the component under test), and destructive techniques (i.e. not allowing additive electrical measurement). The second chapter presents the high frequency and thermal stress bench dedicated to this study; the addition of a vector network analyzer switching between the four test channels provides dynamic frequency data, in order to interpret the variations of the small signal electrical model of the devices under test at different stress periods.[...]

Identiferoai:union.ndltd.org:theses.fr/2018TOU30164
Date18 October 2018
CreatorsSaugnon, Damien
ContributorsToulouse 3, Tartarin, Jean-Guy, Boone, François
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds