Return to search

Synthesis of ZnO nanowires and applications as gas sensors

Gas sensors are devices that can convert the concentration of an analyte gas into an electronic signal. Zinc oxide (ZnO) is an important n-type metal oxide semiconductor which has been utilized as sensor for several decades. In recent years, there have been extensive investigations of nanoscale semiconductor gas sensors. The size reduction of ZnO sensors to nanometer scale provides a good opportunity to dramatically increase their sensing properties in comparison with their macroscale counterparts.<p>
In this work, two kinds of ZnO nanostructures (nanowires and nanorods) were studied. ZnO nanowires were synthesized by electrodeposition while porous anodic aluminum oxide served as a growth template. Three types of ZnO nanowires with different diameters were obtained. Meanwhile, ZnO nanorods were prepared by a hydrothermal route from ZnO nanoparticle seeds. However, the aspect ratio (length/width) of nanorods was significantly smaller than that of nanowires. Both nanowires and nanorods were characterized by optical microscopy, scanning electron microscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy and energy dispersive spectroscopy.<p>
The sensing performance of the synthetic ZnO nanostructures were investigated by three gases: saturated water vapour in air, saturated ethanol vapour in air, and carbon monoxide in air. Both ZnO nanostructures showed good sensitivity and selectivity to ethanol vapour. At high temperature, the ZnO nanosensors were up to seven times more responsive to ethanol vapour than water vapour and over 200 times more responsive to ethanol vapour than CO. Due to the size dependence, ZnO nanowires with the smallest diameter is considered the best sensor candidate among ZnO nanowires.<p>
On the basis of previous work, Au/ZnO/Au multimetallic nanobarcodes were also synthesized by electrodeposition, and their sensing characteristics are to be investigated in the future.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-09102010-145033
Date13 September 2010
CreatorsLiu, Mintang
ContributorsMueller, Jens, Scott, Robert R. J., Yang, Qiaoqin, Urquhart, Stephen G.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-09102010-145033/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0149 seconds