Solar energy has come to the forefront as a scalable and largely underutilized renewable energy resource. The current cost of solar electricity, namely from photovoltaics, along with other logistics factors, has prevented the widespread adaptation of the technology. A key determinant of efficiency and cost for a solar cell is the current collector grid. This work presents the Collimated Aerosol Beam Direct Write (CAB-DW) system as a non-contact printing method that can achieve current collector grid finger widths of less than 10 μm which are amenable to decreasing both resistive and optical losses. The ability to produce high aspect ratio grid fingers, and deposit optimized grid structures on high efficiency SHJ solar cells using silver nanoparticle inks is also demonstrated. A decrease in shadowing and via profile modification of the grid fingers is presented, along with a study of aging and degradation of electrical properties within silver nanoparticle inks.
Identifer | oai:union.ndltd.org:ndsu.edu/oai:library.ndsu.edu:10365/26656 |
Date | January 2012 |
Creators | Fink, Jacob Eugene |
Publisher | North Dakota State University |
Source Sets | North Dakota State University |
Detected Language | English |
Type | text/thesis |
Format | application/pdf |
Rights | NDSU Policy 190.6.2, https://www.ndsu.edu/fileadmin/policy/190.pdf |
Page generated in 0.0016 seconds