In the area of artificial intelligence, the development of Evolutionary Algorithms (EAs) has been very active, especially in the last decade. These algorithms started to evolve when scientists from various regions of the world applied the principles of evolution to algorithmic search and problem solving. EAs have been utilised successfully in diverse complex application areas. Their success in tackling hard problems has been the engine of the field of Evolutionary Computation (EC). Nowadays, EAs are considered to be the best solution to use when facing a hard search or optimisation problem. Various improvements are continually being made with the design of new operators, hybrid models, among others. A very important example of such improvements is the use of parallel models of GAs (PGAs). PGAs have received widespread attention from various researchers as they have proved to be more effective than panmictic GAs, especially in terms of efficacy and speedup. This thesis focuses on, and investigates, cellular Genetic Algorithms (cGAs)-a competitive variant of parallel GAs. In a cGA, the tentative solutions evolve in overlapped neighbourhoods, allowing smooth diffusion of the solutions. The benefits derived from using cGAs come not only from flexibility gains and their fitness to the objective target in combination with a robust behaviour but also from their high performance and amenability to implementation using advanced custom silicon chip technologies. Nowadays, cGAs are considered as adaptable concepts for solving problems, especially complex optimisation problems. Due to their structural characteristics, cGAs are able to promote an adequate exploration/exploitation trade-off and thus maintain genetic diversity. Moreover, cGAs are characterised as being massively parallel and easy to implement. The structural characteristics inherited in a cGA provide an active area for investigation. Because of the vital role grid structure plays in determining the effectiveness of the algorithm, cellular dimensionality is the main issue to be investigated here. The implementation of cGAs is commonly carried out on a one- or two-dimensional structure. Studies that investigate higher cellular dimensions are lacking. Accordingly, this research focuses on cGAs that are implemented on a three-dimensional structure. Having a structure with three dimensions, specifically a cubic structure, facilitates faster spreading of solutions due to the shorter radius and denser neighbourhood that result from the vertical expansion of cells. In this thesis, a comparative study of cellular dimensionality is conducted. Simulation results demonstrate higher performance achieved by 3D-cGAs over their 2D-cGAs counterparts. The direct implementation of 3D-cGAs on the new advanced 3D-IC technology will provide added benefits such as higher performance combined with a reduction in interconnection delays, routing length, and power consumption. The maintenance of system reliability and availability is a major concern that must be addressed. A system is likely to fail due to either hard or soft errors. Therefore, detecting a fault before it deteriorates system performance is a crucial issue. Single Event Upsets (SEUs), or soft errors, do not cause permanent damage to system functionality, and can be handled using fault-tolerant techniques. Existing fault-tolerant techniques include hardware or software fault tolerance, or a combination of both. In this thesis, fault-tolerant techniques that mitigate SEUs at the algorithmic level are explored and the inherent abilities of cGAs to deal with these errors are investigated. A fault-tolerant technique and several mitigation techniques are also proposed, and faulty critical data are evaluated critical fault scenarios (stuck at ‘1’ and stuck at ‘0’ faults) are taken into consideration. Chief among several test and real world problems is the problem of determining the attitude of a vehicle using a Global Positioning System (GPS), which is an example of hard real-time application. Results illustrate the ability of cGAs to maintain their functionality and give an adequate performance even with the existence of up to 40% errors in fitness score cells. The final aspect investigated in this thesis is the dynamic characteristic of cGAs. cGAs, and EAs in general, are known to be stochastic search techniques. Hence, adaptive systems are required to continue to perform effectively in a changing environment, particularly when tackling real-world problems. The adaptation in cellular engines is mainly achieved through dynamic balancing between exploration and exploitation. This area has received considerable attention from researchers who focus on improving the algorithmic performance without incurring additional computational effort. The structural properties and the genetic operations provide ways to control selection pressure and, as a result, the exploration/exploitation trade-off. In this thesis, the genetic operations of cGAs, particularly the selection aspect and their influence on the search process, are investigated in order to dynamically control the exploration/exploitation trade-off. Two adaptive-dynamic techniques that use genetic diversity and convergence speeds to guide the search are proposed. Results obtained by evaluating the proposed approaches on a test bench of diverse-characteristic real-world and test problems showed improvement in dynamic cGAs performance over their static counterparts and other dynamic cGAs. For example, the proposed Diversity-Guided 3D-cGA outperformed all the other dynamic cGAs evaluated by obtaining a higher search success rate that reached to 55%.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:578380 |
Date | January 2012 |
Creators | Al Naqi, Asmaa |
Contributors | Arslan, Tughrul; Erdogan, Ahmet |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/7715 |
Page generated in 0.0024 seconds