by Ngan Po Shun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 109-115). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Data Mining --- p.1 / Chapter 1.2 --- Motivation --- p.4 / Chapter 1.3 --- Contributions of the research --- p.5 / Chapter 1.4 --- Organization of the thesis --- p.6 / Chapter 2 --- Related Work in Data Mining --- p.9 / Chapter 2.1 --- Decision Tree Approach --- p.9 / Chapter 2.1.1 --- ID3 --- p.10 / Chapter 2.1.2 --- C4.5 --- p.11 / Chapter 2.2 --- Classification Rule Learning --- p.13 / Chapter 2.2.1 --- AQ algorithm --- p.13 / Chapter 2.2.2 --- CN2 --- p.14 / Chapter 2.2.3 --- C4.5RULES --- p.16 / Chapter 2.3 --- Association Rule Mining --- p.16 / Chapter 2.3.1 --- Apriori --- p.17 / Chapter 2.3.2 --- Quantitative Association Rule Mining --- p.18 / Chapter 2.4 --- Statistical Approach --- p.19 / Chapter 2.4.1 --- Chi Square Test and Bayesian Classifier --- p.19 / Chapter 2.4.2 --- FORTY-NINER --- p.21 / Chapter 2.4.3 --- EXPLORA --- p.22 / Chapter 2.5 --- Bayesian Network Learning --- p.23 / Chapter 2.5.1 --- Learning Bayesian Networks using the Minimum Descrip- tion Length (MDL) Principle --- p.24 / Chapter 2.5.2 --- Discretizating Continuous Attributes while Learning Bayesian Networks --- p.26 / Chapter 3 --- Overview of Evolutionary Computation --- p.29 / Chapter 3.1 --- Evolutionary Computation --- p.29 / Chapter 3.1.1 --- Genetic Algorithm --- p.30 / Chapter 3.1.2 --- Genetic Programming --- p.32 / Chapter 3.1.3 --- Evolutionary Programming --- p.34 / Chapter 3.1.4 --- Evolution Strategy --- p.37 / Chapter 3.1.5 --- Selection Methods --- p.38 / Chapter 3.2 --- Generic Genetic Programming --- p.39 / Chapter 3.3 --- Data mining using Evolutionary Computation --- p.43 / Chapter 4 --- Applying Generic Genetic Programming for Rule Learning --- p.45 / Chapter 4.1 --- Grammar --- p.46 / Chapter 4.2 --- Population Creation --- p.49 / Chapter 4.3 --- Genetic Operators --- p.50 / Chapter 4.4 --- Evaluation of Rules --- p.52 / Chapter 5 --- Learning Multiple Rules from Data --- p.56 / Chapter 5.1 --- Previous approaches --- p.57 / Chapter 5.1.1 --- Preselection --- p.57 / Chapter 5.1.2 --- Crowding --- p.57 / Chapter 5.1.3 --- Deterministic Crowding --- p.58 / Chapter 5.1.4 --- Fitness sharing --- p.58 / Chapter 5.2 --- Token Competition --- p.59 / Chapter 5.3 --- The Complete Rule Learning Approach --- p.61 / Chapter 5.4 --- Experiments with Machine Learning Databases --- p.64 / Chapter 5.4.1 --- Experimental results on the Iris Plant Database --- p.65 / Chapter 5.4.2 --- Experimental results on the Monk Database --- p.67 / Chapter 6 --- Bayesian Network Learning --- p.72 / Chapter 6.1 --- The MDLEP Learning Approach --- p.73 / Chapter 6.2 --- Learning of Discretization Policy by Genetic Algorithm --- p.74 / Chapter 6.2.1 --- Individual Representation --- p.76 / Chapter 6.2.2 --- Genetic Operators --- p.78 / Chapter 6.3 --- Experimental Results --- p.79 / Chapter 6.3.1 --- Experiment 1 --- p.80 / Chapter 6.3.2 --- Experiment 2 --- p.82 / Chapter 6.3.3 --- Experiment 3 --- p.83 / Chapter 6.3.4 --- Comparison between the GA approach and the greedy ap- proach --- p.91 / Chapter 7 --- Medical Data Mining System --- p.93 / Chapter 7.1 --- A Case Study on the Fracture Database --- p.95 / Chapter 7.1.1 --- Results of Causality and Structure Analysis --- p.95 / Chapter 7.1.2 --- Results of Rule Learning --- p.97 / Chapter 7.2 --- A Case Study on the Scoliosis Database --- p.100 / Chapter 7.2.1 --- Results of Causality and Structure Analysis --- p.100 / Chapter 7.2.2 --- Results of Rule Learning --- p.102 / Chapter 8 --- Conclusion and Future Work --- p.106 / Bibliography --- p.109 / Chapter A --- The Rule Sets Discovered --- p.116 / Chapter A.1 --- The Best Rule Set Learned from the Iris Database --- p.116 / Chapter A.2 --- The Best Rule Set Learned from the Monk Database --- p.116 / Chapter A.2.1 --- Monkl --- p.116 / Chapter A.2.2 --- Monk2 --- p.117 / Chapter A.2.3 --- Monk3 --- p.119 / Chapter A.3 --- The Best Rule Set Learned from the Fracture Database --- p.120 / Chapter A.3.1 --- Type I Rules: About Diagnosis --- p.120 / Chapter A.3.2 --- Type II Rules : About Operation/Surgeon --- p.120 / Chapter A.3.3 --- Type III Rules : About Stay --- p.122 / Chapter A.4 --- The Best Rule Set Learned from the Scoliosis Database --- p.123 / Chapter A.4.1 --- Rules for Classification --- p.123 / Chapter A.4.2 --- Rules for Treatment --- p.126 / Chapter B --- The Grammar used for the fracture and Scoliosis databases --- p.128 / Chapter B.1 --- The grammar for the fracture database --- p.128 / Chapter B.2 --- The grammar for the Scoliosis database --- p.128
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322328 |
Date | January 1998 |
Contributors | Ngan, Po Shun., Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xii, 129 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0068 seconds