Return to search

A Method for Aircraft Concept Exploration using Multicriteria Interactive Genetic Algorithms

The problem of aircraft concept selection has become increasingly difficult in recent years due to changes in the primary evaluation criteria of concepts. In the past, performance was often the primary discriminator whereas modern programs have placed increased emphasis on factors such as environmental impact, economics, supportability, aesthetics, and other metrics. The revolutionary nature of the vehicles required to simultaneously meet these conflicting requirements has prompted a shift from design using historical data regression techniques for metric prediction to the use of sophisticated physics-based analysis tools that are capable of analyzing designs outside of the historical database. The use of optimization methods with these physics-based tools, however, has proven difficult because of the tendency of optimizers to exploit assumptions present in the models and drive the design towards a solution which, while promising to the computer, may be infeasible due to factors not considered by the computer codes. In addition to this difficulty, the number of discrete options available at this stage may be unmanageable due to the combinatorial nature of the concept selection problem, leading the analyst to select a sub-optimum baseline vehicle. Some extremely important concept decisions, such as the type of control surface arrangement to use, are frequently made without sufficient understanding of their impact on the important system metrics due to a lack of historical guidance, computational resources, or analysis tools.
This thesis discusses the difficulties associated with revolutionary system design, and introduces several new techniques designed to remedy them. First, an interactive design method has been developed that allows the designer to provide feedback to a numerical optimization algorithm during runtime, thereby preventing the optimizer from exploiting weaknesses in the analytical model. This method can be used to account for subjective criteria, or as a crude measure of un-modeled quantitative criteria. Other contributions of the work include a modified Structured Genetic Algorithm that enables the efficient search of large combinatorial design hierarchies and an improved multi-objective optimization procedure that can effectively optimize several objectives simultaneously. A new conceptual design method has been created by drawing upon each of these new capabilities and aspects of more traditional design methods.
The ability of this new technique to assist in the design of revolutionary vehicles has been demonstrated using a problem of contemporary interest: the concept exploration of a supersonic business jet. This problem was found to be a good demonstration case because of its novelty and unique requirements, and the results of this proof of concept exercise indicate that the new method is effective at providing additional insight into the relationship between a vehicle's requirements and its favorable attributes.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7571
Date28 November 2005
CreatorsBuonanno, Michael Alexander
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format12141755 bytes, application/pdf

Page generated in 0.0018 seconds