Return to search

Stress Intensity Solutions of Thermally Induced Cracks in a Combustor Liner Hot Spot Using Finite Element Analysis

Thermally cycling a thin plate of nickel-based superalloy with an intense in-plane thermal gradient, or hot spot, produces thermally induced crack growth not represented by classic thermo-mechanical fatigue (TMF). With the max hot spot temperature at 1093 C (2000 F) of a 1.5 mm thick, 82.55 mm diameter circular plate of B-1900+Hf, annular buckling and bending stresses result during each thermal cycle which drive the crack initiation and propagation. A finite element analysis (FEA) model, using ANSYS 7.1, has been developed which models the buckling and as well as represents the stress intensity at simulated crack lengths upon cool down of each thermal cycle. The model approximates the out-of-plane response at heat-up within 5% error and a difference in the final displacement of 0.185 mm after twelve thermal cycles. Using published da/dN vs. Keff data, the number of cycles needed to grow the crack to the experimental arrest distance is modeled within 1 mm. The number of cycles to this point is within 5 out of 462 in comparison to the experimental test.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7515
Date17 November 2005
CreatorsRhymer, Donald William
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format3952875 bytes, application/pdf

Page generated in 0.0017 seconds