Return to search

A graphics architecture for ray tracing and photon mapping

Recently, methods were developed to render various global illumination effects with rasterization GPUs. Among those were hardware based ray tracing and photon mapping. However, due to current GPU??s inherent architectural limitations, the efficiency and throughput of these methods remained low. In this thesis, we propose a coherent rendering system that addresses these issues. First, we introduce new photon mapping and ray racing acceleration algorithms that facilitate data coherence and spatial locality, as well as eliminating unnecessary random memory accesses. A high level abstraction of the combined ray tracing and photon mapping streaming pipeline is introduced. Based on this abstraction, an efficient ray tracing and photon mapping GPU is designed. Using an event driven simulator, developed for this GPU, we verify and validate the proposed algorithms and architecture. Simulation results have validated better interactive performances compared to the current GPUs.

Identiferoai:union.ndltd.org:TEXASAandM/oai:repository.tamu.edu:1969.1/2741
Date01 November 2005
CreatorsLing, Junyi
ContributorsAkleman, Ergun, Mahapatra, Rabi, Keyser, John
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeElectronic Thesis, text
Format804878 bytes, electronic, application/pdf, born digital

Page generated in 0.0027 seconds