Return to search

Permanent Deformation Behaviour of Unbound Granular Materials in Pavement Constructions

A new simple design approach will be described that utilizes test results from the Repeated Load Triaxial Apparatus to establish the risk level of permanent deformations in the unbound granular layers (UGL) in pavement constructions under consideration of the seasonal effects. From this data a serviceability limit line (plastic shakedown limit) stress boundary for the unbound granular materials (UGM) was defined for different moisture contents. Below this line the material will have stable behavior. The serviceability limit line was applied in a finite-element (FE)-program FENLAP to predict whether or not stable behavior occurs in the UGM. To calculate the stress in the UGL, a nonlinear elastic model (Dresden Model), which is described in the paper, was implemented into the FE-program. The effects of changing moisture content during Spring-thaw period and asphalt temperature on pavement structural response were investigated. Additionally, permanent deformation calculations for the UGL were performed taking the stress history into consideration. The results clearly demonstrate that, for pavement constructions with thick asphalt layers, there is no risk of rutting in the granular base, even at high number of load repetitions. The study showed that the proposed design approach is a very satisfactory simple method to assess the risk against rutting in the UGL, even without the calculation of the exact permanent deformation of the pavement construction.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24221
Date07 April 2003
CreatorsWerkmeister, Sabine
ContributorsWellner, Frohmut, Litzka, Johann, Molenaar, Andre
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds