The Grid has been recognised as the next-generation distributed computing paradigm by seamlessly integrating heterogeneous resources across administrative domains as a single virtual system. There are an increasing number of scientific and business projects that employ Grid computing technologies for large-scale resource sharing and collaborations. Early adoptions of Grid computing technologies have custom middleware implemented to bridge gaps between heterogeneous computing backbones. These custom solutions form the basis to the emerging Open Grid Service Architecture (OGSA), which aims at addressing common concerns of Grid systems by defining a set of interoperable and reusable Grid services. One of common concerns as defined in OGSA is the Grid accounting service. The main objective of the Grid accounting service is to ensure resources to be shared within a Grid environment in an accountable manner by metering and logging accurate resource usage information. This thesis discusses the origins and fundamentals of Grid computing and accounting service in the context of OGSA profile. A prototype was developed and evaluated based on OGSA accounting-related standards enabling sharing accounting data in a multi-Grid environment, the World-wide Large Hadron Collider Grid (WLCG). Based on this prototype and lessons learned, a generic middleware solution was also implemented as a toolkit that eases migration of existing accounting system to be standard compatible.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:529070 |
Date | January 2010 |
Creators | Chen, Xiaoyn |
Contributors | Khan, A. ; Taylor, R. E. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/4637 |
Page generated in 0.0017 seconds