Return to search

Unravelling novel molecular targets for photobiomodulation in human hair follicle towards the development of more effective light-based therapies for hair growth

Light and optical techniques have made a profound impact on modern medicine both in diagnostics and in therapy. Therapeutic action of light is based on photomechanical, photothermal, photochemical and photobiological interactions, depending on the wavelength, power density, exposure time and optical properties of tissue and cells. Last decade experienced a growing rise of commercial devices for management of hair growth, where all of them are based on low levels of light resulting into photobiological, non-thermal interaction of photons with cells, a process that recently has received an official term ‘photobiomodulation’. However, the design and analysis of the reported clinical studies are highly debated in a wider scientific community. The picture is further complicated by a virtual lack of proof about the exact molecular targets that mediate the physiological response of skin and hair follicles (HF) to low levels of light. The goal of this project was to investigate the expression of light-sensitive receptors in the human HF and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Cryptochromes 1 and 2 (CRY1, 2), Opsin 2 and 3 (OPN2 and OPN3), but not other Opsins 1, 4 and 5 was detected in the distinct compartments of skin and anagen HF. Evaluation of the physiological role of detected light-sensitive receptors on hair growth was performed by the modulation of photoreceptors activity in HF ex vivo model. HFs treated with KL001, a stabilizer of CRY1 protein that lengthens the circadian period, delayed HF anagen-catagen transition; while silencing of CRY1 induced premature catagen development accompanied by reduced cell proliferation. Silencing of CRY1 in the HF outer root sheath (ORS) cells in vitro caused downregulation of ii genes involved in the control of proliferation; including the cyclin dependent kinase 6 (CDK6). OPN3 also had a positive effect on metabolic activity and proliferation of the ORS cells in vitro. OPN3 silencing resulted in the altered expression of genes involved in the control of proliferation and apoptosis. Investigated CRY1, OPN2 and 3 greatly absorb in the blue to green-region of the visible spectrum. This led us to investigate the effect of blue light on HF growth. Daily treatment with blue light (453 nm, 3.2 J/cm2, 16 nm full width half maximum) prolonged anagen phase in HF ex vivo that was associated with sustained proliferation. In addition, blue light (3.2 J/cm2) significantly stimulated proliferation of ORS cells in vitro. This effect was abrogated by silencing of OPN3. To summarize, CRY 1, OPN 2 and OPN 3 are expressed in the distinct compartments of the HF, including HF stem cells. Blue light (453 nm) at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. The further research should be conducted to decipher interactions between blue light and the investigated receptors in the HFs. In addition, the beneficial effect of blue light at low radiant exposure on hair growth raises a possibility of increasing therapeutic efficacy when combined with topical chemistry used for management of hair growth.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:742742
Date January 2017
CreatorsBuscone, Serena
PublisherUniversity of Bradford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10454/16001

Page generated in 0.0019 seconds