Return to search

Peptide modified electrochemical sensors for the detection of heavy metal ions

In this research, the determination of trace concentrations of heavy metal ions was investigated using peptide modified electrochemical biosensors. The biosensor has several advantages over atomic absorption spectroscopy and inductively coupled plasma mass spectrometry by offering greater simplicity in use and the possibility of determining the bioavailability of heavy metals. Oligopeptides were modified on the electrode surface through the spontaneous self-assembly of thiols on gold. Firstly, 3-mercaptopropionic acid (MPA) was self-assembled onto the gold surface followed by activation of the carboxyl groups using a combination of carbodiimide and succinimide chemistry for coupling of the N-terminus of the peptide to occur. Using this generic strategy, Gly-Gly-His was used for the determination of copper ions. Cu2+ was accumulated at the MPA-Gly-Gly-His modified electrode at open circuit potential followed by electrochemical measurements. The reduction of Cu2+ to form underpotential deposited copper in the Osteryoung square wave voltammogram was used for quantification. The influence of various factors on the performance was investigated and after the optimal conditions had been identified, the biosensor was used for Cu2+ calibration and was applied to the analysis of a real sample. For Cd2+ detection, two different peptides covalently attached to MPA were investigated, g-Glu-Cys-Gly (GSH) and His-Ser-Gln-Lys-Val-Phe, with the latter sensor exhibiting a lower Cd2+ detection limit, higher sensitivity and greater selectivity. Although the success of MPA as a peptide linker to the gold surface had been shown for the detection of Cu2+ and Cd2+, a more viable approach was necessary for the stable detection of a wider range of metal ions. A more stable self-assembled monolayer of thioctic acid (TA) was identified in which human angiotensin I was attached. This alternate modification procedure was superior to MPA-angiotensin I for Pb2+ detection in terms of stability and reusability with the drawback being sensitivity. The newly identified strategy was also applied to the determination of Ag+ using TA-methionine enkephalin modified electrodes. A sensor array for Cu2+ was also investigated as well as an extension to the simultaneous determination of multianalytes using four different modified electrodes. Combining a soft-modelling approach, the responses of Cu2+, Cd2+ and Pb2+ could be deconvoluted.

Identiferoai:union.ndltd.org:ADTP/235003
Date January 2006
CreatorsChow, Edith, Chemistry, Faculty of Science, UNSW
PublisherAwarded by:University of New South Wales. Chemistry
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Edith Chow, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0021 seconds