Return to search

Using Workload Characterization to Guide High Performance Graph Processing

Graph analytics represent an important application domain widely used in many fields such as web graphs, social networks, and Bayesian networks. The sheer size of the graph data sets combined with the irregular nature of the underlying problem pose a significant challenge for performance, scalability, and power efficiency of graph processing. With the exponential growth of the size of graph datasets, there is an ever-growing need for faster more power efficient graph solvers. The computational needs of graph processing can take advantage of the FPGAs' power efficiency and customizable architecture paired with CPUs' general purpose processing power and sophisticated cache policies. CPU-FPGA hybrid systems have the potential for supporting performant and scalable graph solvers if both devices can work coherently to make up for each other's deficits.

This study aims to optimize graph processing on heterogeneous systems through interdisciplinary research that would impact both the graph processing community, and the FPGA/heterogeneous computing community. On one hand, this research explores how to harness the computational power of FPGAs and how to cooperatively work in a CPU-FPGA hybrid system. On the other hand, graph applications have a data-driven execution profile; hence, this study explores how to take advantage of information about the graph input properties to optimize the performance of graph solvers.

The introduction of High Level Synthesis (HLS) tools allowed FPGAs to be accessible to the masses but they are yet to be performant and efficient, especially in the case of irregular graph applications. Therefore, this dissertation proposes automated frameworks to help integrate FPGAs into mainstream computing. This is achieved by first exploring the optimization space of HLS-FPGA designs, then devising a domain-specific performance model that is used to build an automated framework to guide the optimization process. Moreover, the architectural strengths of both CPUs and FPGAs are exploited to maximize graph processing performance via an automated framework for workload distribution on the available hardware resources. / Doctor of Philosophy / Graph processing is a very important application domain, which is emphasized by the fact that many real-world problems can be represented as graph applications. For instance, looking at the internet, web pages can be represented as the graph vertices while hyper links between them represent the edges. Analyzing these types of graphs is used for web search engines, ranking websites, and network analysis among other uses. However, graph processing is computationally demanding and very challenging to optimize. This is due to the irregular nature of graph problems, which can be characterized by frequent indirect memory accesses. Such a memory access pattern is dependent on the data input and impossible to predict, which renders CPUs' sophisticated caching policies useless to performance.

With the rise of heterogeneous computing that enabled using hardware accelerators, a new research area was born, attempting to maximize performance by utilizing the available hardware devices in a heterogeneous ecosystem. This dissertation aims to improve the efficiency of utilizing such heterogeneous systems when targeting graph applications. More specifically, this research focuses on the collaboration of CPUs and FPGAs (Field Programmable Gate Arrays) in a CPU-FPGA hybrid system. Innovative ideas are presented to exploit the strengths of each available device in such a heterogeneous system, as well as addressing some of the inherent challenges of graph processing. Automated frameworks are introduced to efficiently utilize the FPGA devices, in addition to distributing and scheduling the workload across multiple devices to maximize the performance of graph applications.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/103469
Date24 May 2021
CreatorsHassan, Mohamed Wasfy Abdelfattah
ContributorsElectrical and Computer Engineering, Athanas, Peter M., Hsiao, Michael S., Plassmann, Paul E., Hanafy, Yasser Y., Eldardiry, Hoda
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds