The capacitance-resistance model (CRM) has been continuously improved and tested on both synthetic and real fields. For a large waterflood, with hundreds of injectors and producers present in a reservoir, tens of thousands of model parameters (gains, time constants, and productivity indices) in a field must be determined to completely define the CRM. In this case obtaining a unique solution in history-matching large reservoirs by nonlinear regression is difficult. Moreover, this approach is more likely to produce parameters that are statistically insignificant. The nonlinear nature of the CRM also makes it difficult to quantify the uncertainty in model parameters. The analytical solutions of the two linear reservoir models, the linearly transformed CRM whose control volume is the drainage volume around each producer (ltCRMP) and integrated capacitance-resistance model (ICRM), are developed in this work. Both models are derived from the governing differential equation of the producer-based representation of CRM (CRMP) that represents an in-situ material balance over the effective pore volume of a producer. The proposed methods use a constrained linear multivariate regression (LMR) to provide information about preferential permeability trends and fractures in a reservoir. The two models’ capabilities are validated with simulated data in several synthetic case studies. The ltCRMP and ICRM have the following advantages over the nonlinear waterflood model (CRMP): (1) convex objective functions, (2) elimination of the use of solver when constraints are ignored, and (3) faster computation time in optimization. In both methods, a unique solution can always be obtained regardless of the number of parameters as long as the number of data points is greater than the number of unknowns (parameters). The methods of establishing the confidence limits on CRMP gains and ICRM parameters are demonstrated in this work. This research also presents a method that uses the ICRM to estimate the gains between newly introduced injectors and existing producers for a homogeneous reservoir without having to do additional simulations or regression on newly simulated data. This procedure can guide geoscientists to decide where to drill new injectors to increase future oil recovery and provide rapid solutions without having to run reservoir simulations for each scenario. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-12-4644 |
Date | 13 February 2012 |
Creators | Kim, Jong Suk |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0019 seconds