Return to search

Residual stress effects on the fracture toughness behaviour of a narrow-gap austenitic stainless steel pipe weld

Automated narrow-gap girth-butt welds are replacing conventional welding methods to join sections of austenitic stainless steel pipe in the primary circuit of Pressurised Water Reactors, to reduce manufacturing costs and improve quality. To ensure the safe operation of these systems, reliable structural integrity assessments have to be undertaken, requiring the mechanical properties of welded joints to be characterised alongside the weld residual stress magnitude and distribution.This research project characterised, for the first time, the weld residual stress field and the tensile and ductile fracture toughness properties of a 33 mm thick narrow-gap 304L stainless steel pipe weld. The residual stress was characterised using two complementary approaches: deep hole drilling and neutron diffraction. A novel neutron diffraction scanning technique was developed to characterise the residual stress field, without cutting an access window into the component, leaving the original weld residual stress field undisturbed. A modified deep hole drilling technique was developed to characterise the residual stress retained in fracture mechanics specimens extracted from the pipe weld in two orientations. The modified technique was shown to measure the original weld residual stress field more accurately than through conventional deep hole drilling. Residual stresses, exceeding 50% of the weld material proof strength, were retained in axially-orientated fracture mechanics specimens.Tensile tests showed that the weld was approximately 60% overmatched. It was demonstrated that neither retained residual stress, nor specimen orientation, had a discernible effect on the measured fracture toughness of the weld material. In less ductile materials, however, the level of retained residual stress may unduly influence the measurement of fracture toughness. At initiation, the fracture toughness properties of both the parent and weld materials were far in excess of the measuring capacity of the largest fracture mechanics specimens that could be machined from the weld.The influence of residual stress and fracture toughness on the performance of narrow-gap welded pipework was investigated. Full elastic-plastic finite element analyses were used to model the pipe weld, containing a postulated defect under combined primary and secondary loading. The results, applied within the framework of an R6 structural integrity assessment, compared different plasticity interaction parameters on the prediction of failure load; the conventional ρ-parameter approach was compared with the recently developed, more advanced, g-parameter. It was shown that the g-parameter significantly reduced the conservatism of the ρ-parameter approach. However, for this pipe weld, plastic collapse was predicted to precede failure by ductile initiation, suggesting that a plastic collapse solution may be an appropriate failure criterion to use in structural integrity assessments of similar component and defect combinations.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:559336
Date January 2012
CreatorsMcCluskey, Robert
ContributorsSherry, Andrew
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/residual-stress-effects-on-the-fracture-toughness-behaviour-of-a-narrowgap-austenitic-stainless-steel-pipe-weld(7cc3ac9b-ff15-4fca-88ff-313d48f8858b).html

Page generated in 0.0016 seconds