Return to search

Observational Study of Dust-Rich Quasars

Thesis advisor: Kevin Bedell / Thesis advisor: Giovanni Fazio / One of the most exciting observational breakthrough in the past decades is the discovery of the tight correlations between supermassive black holes (SMBHs) and the galaxies they reside in the `host galaxies'. This finding is surprising, as the event horizon of a typical SMBH (about 10^8 solar masses) is about 3 times 10^8 km, while the galaxy is usually about 10^17 km across, a billion times larger. How could such a small object affect something so big? SMBHs appear to be at the center of most massive galaxies, and how they interact with the host galaxies has become a fundamental question in astrophysics. To understand how galaxies and SMBHs evolve together, we must first understand the statistical properties of these systems. Quasars, the bright manifestation of the most active SMBHs, serve as good candidate for this study. Using infrared space telescopes--Spitzer and Herschel, we discovered a population of `dust-rich' quasars at intermediate redshift (z about 1.5, about 9 billion years ago) in the Lockman Hole field. We study the statistical properties of these mid-infrared (MIR) and optically-selected quasars via optical and infrared observations. I present the MIR-selected quasar sample (Chapter 2), their addition to the completeness of optically-selected sample (Chapter 3), and their physical properties, i.e., their atomic emission and absorption features, SMBH masses, and Eddington ratios--an indicator of how fast the SMBH is growing (Chapter 4). We find a significant and constant (20%) fraction of extended objects previously missed optical color selection. The SMBH mass shows evidence of downsizing--they are more massive in the early universe, though their Eddington ratios remain constant to between now and about 11 billion years ago (0 lower than z lower than 3). In the past 7 billion years (z lower than 1), quasars with extended morphology show systematically lower Eddington ratios than the point-like quasars, indicating they have less active SMBHs. We also study the spectral energy distributions (SEDs) of a subsample of `cold-dust-rich' quasars (Chapter 5) that show evidence of ongoing star formation--an indicator of how fast the host galaxy is growing. These quasars are the younger and fainter counterparts of quasars previously observed in the sub-millimeter band, as both are bright in the far-infrared, where star formation dominates. For the most luminous cold-dust-rich quasars, however, their infrared SED suggests that the dust is heated by quasars, instead of star formation in the host galaxies. Chapter 6 gives a summary of this study and comment on the significance of the dust-rich quasars in bridging the gap between SMBHs with their host galaxies. Finally some avenues for future work are discussed. / Thesis (PhD) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_102009
Date January 2013
CreatorsDai, Yu
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0026 seconds