Picosatellites are defined as satellites with a mass between 0.1 and 1kg (Miniaturized satellite). Picosatellites are typically designed to work together or function in formations (Miniaturized satellite). A specific type of Picosatellite known as CubeSats were introduced in 1999 and since then have increased in popularity so that there are now over 80 CubeSat programs around the world. CubeSats are defined as cubic units 10cm on each side and no more than 1kg in mass. CubeSats are required to conform to the CubeSat Standard created by California Polytechnic State University and Stanford University and be compatible with Cal Poly’s P-POD deployment system (Toorian, 2005). Some CubeSat uses include earth imaging, communications projects and various scientific experiments. CubeSats currently require attitude control and in the future, may require, maintaining a specific orbit, or changing orbit. With this ability many new activities may be possible for CubeSats. These activities could include rendezvous, vehicle inspection, formation flying and de-orbiting. For these activities to be possible, a high performance propulsion system is required. The goal of this thesis is to design and test an affordable, safe, and effective micro-propulsion system for CubeSats.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1160 |
Date | 01 August 2009 |
Creators | Biddy, Christopher Lorian |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses and Project Reports |
Page generated in 0.0019 seconds