Return to search

Kinetics and effects of H2 partial pressure on hydrotreating of heavy gas oil

The impact of H2 partial pressure (H2 pp) during the hydrotreating of heavy gas oil, derived from Athabasca bitumen, over commercial NiMo/¥ã-Al2O3 catalyst was studied in a micro-trickle bed reactor. The experimental conditions were varied as follows: temperature: 360 to 400¨¬C, pressure: 7 to 11 MPa, gas/oil ratio: 400 to 1270 mL/mL, H2 purity range of 0 to 100 vol. % (with the rest either CH4 or He), and LHSV range of 0.65 to 2 h-1. The two main objectives of the project were to study the nature of the dependence of H2 pp on temperature, pressure, gas/oil ratio, LHSV (Liquid Hourly Space Velocity), and H2 purity. The project was divided into three phases: in phase one the effect of H2 purity on hydrotreating of heavy gas oil (HGO) was studied, in phase two the nature of H2 pp dependency and the effect of H2 pp on hydrotreating of HGO was investigated, and in phase three kinetic studies were carried out using different kinetic models.<p>
The objective of phase one was to study the effect of hydrogen purity on hydrotreating of HGO was studied in a trickle bed reactor over a commercial Ni−Mo/¥ã-alumina catalyst. Methane was used as a diluent for the hydrogen stream, and its effect on the catalyst performance was compared to that of helium, which is inert toward the catalyst. Furthermore, a deactivation study was conducted over a period of 66 days, during which the catalyst was subjected to H2 purities ranging from 75 to 95% (with the rest methane); no significant deterioration in the hydroprocessing activities of the catalyst was observed. Therefore, it was concluded that methane was inert toward a commercial Ni−Mo/¥ã-alumina catalyst. However, its presence resulted in hydrogen partial pressure reduction, which in turn led to a decrease in hydrodesulphurization (HDS), hydrodenitrogenation (HDN), hydrodearomatization (HDA) conversions. This reduction can be offset by increasing the total pressure of the system. HDS, HDN, HDA, and mild hydrocracking (MHC) conversions were studied. Also determined were cetane index, density, aniline point, diesel index, and fractional distribution of the products.<p>
The main objective of phase two was to study the effects of H2 pp on hydrotreating conversions, feed vaporization, H2 dissolution, and H2 consumption were studied. The results show that HDN and HDA are significantly more affected by H2 partial pressure than HDS; with the HDN being the most affected. For instance as the inlet H2 partial pressure was increased from 4.6 to 8.9 MPa HDS, HDN, and HDA conversions increased for 94.9%, 55.1%, and 46.0% to 96.7%, 83.9%, and 58.0% , respectively. Moreover, it was observed that H2 dissolution and H2 consumption increased with increasing H2 pp. No clear trend was observed for the effect of H2 pp on feed vaporization.<p>
In phase three the kinetics of HDS, HDN, and HDA were studied. The power law, multi-parameter, and Langmuir - Hinshelwood type models were used to fit the data. The prediction capacities of the resulting models were tested. It was determined that, while multi-parameter model yielded better prediction, L-H had an advantage in that it took a lesser number of experimental data to determine its parameters. Kinetic fitting of the data to a pseudo-first-order power law model suggested that conclusions on the effect of H2 pp on hydrotreating activities could be equally drawn from either inlet or outlet hydrogen partial pressure. However, from the catalyst deactivation standpoint, it is recommended that such conclusions are drawn from the outlet H2 partial pressure, since it is the reactor point with the lowest hydrogen partial pressure.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-12092009-123009
Date09 February 2010
CreatorsMapiour, Majak Loi
ContributorsDr. Dalai, A. J.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-12092009-123009/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0118 seconds