Return to search

Authentication of dongchongxiacao and abalone.

Chan, Wing Hin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 126-143). / Abstracts in English and Chinese. / Acknowledgement --- p.ii / Abstract --- p.iii / 摘要 --- p.vi / Table of Content --- p.viii / List of Figures --- p.xiv / List of Tables --- p.xvi / Abbreviations --- p.xviii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Food and herb authentication --- p.1 / Chapter 1.1.1 --- Background and definition --- p.1 / Chapter 1.1.2 --- Importance of species identification in food and herb authentication --- p.2 / Chapter 1.1.2.1 --- Primary health care --- p.2 / Chapter 1.1.2.2 --- Food and herb safety --- p.3 / Chapter 1.1.2.3 --- Conservation --- p.4 / Chapter 1.1.3 --- Methods for species identification in food and herb authentication --- p.4 / Chapter 1.1.3.1 --- Morphological identification --- p.5 / Chapter 1.1.3.2 --- Chemical analysis --- p.6 / Chapter 1.1.3.3 --- Molecular analysis --- p.9 / Chapter 1.1.4 --- Legislation --- p.11 / Chapter 1.1.4.1 --- Labeling ´ب --- p.11 / Chapter 1.1.4.2 --- Chinese medicine : --- p.12 / Chapter 1.1.4.3 --- Conservation --- p.12 / Chapter 1.2 --- Dongchongxiacao --- p.13 / Chapter 1.2.1 --- Background information of Dongchongxiacao --- p.13 / Chapter 1.2.2 --- Classification of fungal part of Dongchongxiacao --- p.14 / Chapter 1.2.3 --- Dongchongxiacao as a Traditional Chinese Medicine. --- p.15 / Chapter 1.2.4 --- The Dongchongxiacao market --- p.16 / Chapter 1.2.5 --- Adulteration and contamination of Dongchongxiacao --- p.18 / Chapter 1.2.6 --- Authentication of Dongchongxiacao --- p.19 / Chapter 1.2.6.1 --- Morphological identification --- p.19 / Chapter 1.2.6.2 --- Chemical analysis --- p.20 / Chapter 1.2.6.3 --- Molecular analysis --- p.22 / Chapter 1.2.6.3.1 --- "FINS analysis with genomic ITS, nrLSU, EF-lα and rpbl regions for fungal analyses" --- p.22 / Chapter 1.2.6.3.2 --- FINS analysis with mitochondrial CytB and COI regions for caterpillar analyses --- p.24 / Chapter 1.3 --- Abalone --- p.26 / Chapter 1.3.1 --- Background information of abalone --- p.26 / Chapter 1.3.2 --- Abalone as food --- p.27 / Chapter 1.3.3 --- The abalone market --- p.28 / Chapter 1.3.4 --- Adulteration of abalone --- p.31 / Chapter 1.3.5 --- Authentication of abalone --- p.32 / Chapter 1.3.5.1 --- Morphological identification --- p.32 / Chapter 1.3.5.2 --- Chemical analysis --- p.32 / Chapter 1.3.5.3 --- Molecular analysis --- p.33 / Chapter 1.3.5.3.1 --- FINS analysis with mitochondrial COI and 16S rDNA --- p.33 / Chapter 1.3.5.3.2 --- Haliotis-specific detection --- p.34 / Chapter 1.4 --- Aim and Objectives --- p.35 / Chapter Chapter 2 --- Materials and Methods --- p.36 / Chapter 2.1 --- Materials used in this sutdy --- p.36 / Chapter 2.1.1 --- Dongchongxiacao and Cordyceps samples --- p.36 / Chapter 2.1.2 --- Downloaded sequences from NCBI database included in Dongchongxiacao study. --- p.45 / Chapter 2.1.3 --- Abalone and gastropod samples --- p.48 / Chapter 2.1.4 --- Downloaded sequences from NCBI database included in abalone study --- p.54 / Chapter 2.2 --- Reagents and equipments : --- p.56 / Chapter 2.2.1 --- Chemical test on the presence of potassium alum in Dongchongxiacao --- p.56 / Chapter 2.2.2 --- Sample preparation and DNA extraction --- p.57 / Chapter 2.2.3 --- Polymerase Chain Reaction --- p.57 / Chapter 2.2.4 --- Agarose gel electrophoresis and Gene Clean --- p.57 / Chapter 2.2.5 --- Cloning --- p.58 / Chapter 2.2.6 --- Cycle sequencing --- p.58 / Chapter 2.3 --- Experimental procedures --- p.58 / Chapter 2.3.1 --- Morphological observation of Dongchongxiacao and abalone --- p.59 / Chapter 2.3.2 --- Chemical test of potassium in Dongchongxiacao --- p.59 / Chapter 2.3.3 --- Sample preparation and DNA extraction --- p.60 / Chapter 2.3.4 --- Polymerase Chain Reaction --- p.61 / Chapter 2.3.5 --- Agarose gel electrophoresis and Gene Clean --- p.64 / Chapter 2.3.6 --- Cloning --- p.65 / Chapter 2.3.7 --- Cycle sequencing --- p.67 / Chapter 2.3.8 --- Sequence analyses --- p.67 / Chapter 2.3.9 --- Haliotis-specific primer design and PCR test --- p.68 / Chapter Chapter 3 --- Results --- p.71 / Chapter 3.1 --- Dongchongxiacao --- p.71 / Chapter 3.1.1 --- Morphological observations --- p.71 / Chapter 3.1.2 --- Chemical test of potassium alum --- p.77 / Chapter 3.1.3 --- Sequence analyses --- p.79 / Chapter 3.1.4 --- The dendrograms --- p.81 / Chapter 3.2 --- Abalone --- p.91 / Chapter 3.2.1 --- Morphological observations --- p.91 / Chapter 3.2.2 --- Sequence analyses --- p.92 / Chapter 3.2.3 --- The dendrograms --- p.94 / Chapter 3.2.4 --- Haliotis-specific PCR --- p.96 / Chapter Chapter 4 --- Discussion --- p.98 / Chapter 4.1 --- Dongchongxiacao --- p.98 / Chapter 4.1.1 --- Species identification of Dongchongxiacao and related Cordyceps species --- p.98 / Chapter 4.1.1.1 --- Ophiocordyceps sinensis --- p.98 / Chapter 4.1.1.2 --- Cordyceps gunnii --- p.100 / Chapter 4.1.1.3 --- Metacordyceps taii --- p.102 / Chapter 4.1.1.4 --- Cordyceps militaris --- p.103 / Chapter 4.1.2 --- Adulteration of Dongchongxiacao and labeling --- p.104 / Chapter 4.1.3 --- Hosts of Dongchongxiacao fungi and relationship between them --- p.107 / Chapter 4.2 --- Abalone --- p.109 / Chapter 4.2.1 --- Species identification of abalones and other gastropod species by FINS analysis --- p.109 / Chapter 4.2.1.1 --- Haliotis species --- p.109 / Chapter 4.2.1.1.1 --- Haliotis diversicolor --- p.110 / Chapter 4.2.1.1.2 --- Haliotis discus --- p.110 / Chapter 4.2.1.1.3 --- Haliotis asinina --- p.111 / Chapter 4.2.1.1.4 --- Haliotis rufescens --- p.111 / Chapter 4.2.1.1.5 --- Haliotis midae --- p.111 / Chapter 4.2.1.1.6 --- Haliotis madaka --- p.112 / Chapter 4.2.1.1.7 --- Haliotis rubra --- p.113 / Chapter 4.2.1.1.8 --- Haliotis iris --- p.113 / Chapter 4.2.1.1.9 --- Haliotis corrugata --- p.114 / Chapter 4.2.1.2 --- Concholepas concholepas --- p.114 / Chapter 4.2.1.3 --- Hemifusus species --- p.115 / Chapter 4.2.1.4 --- """Dried abalone slice"" samples (D1 to D3) and canned top-shell (E5)" --- p.115 / Chapter 4.2.2 --- Haliotis-speciflc PCR --- p.115 / Chapter 4.2.3 --- Adulteration of abalone and labeling --- p.116 / Chapter 4.3 --- Significance and limitation of molecular approaches in authentication of food and herbs --- p.117 / Chapter 4.3.1 --- FINS analysis --- p.117 / Chapter 4.3.1.1 --- High interspecific variability but low intraspecific variations --- p.118 / Chapter 4.3.1.2 --- Amplification with universal primers --- p.118 / Chapter 4.3.1.3 --- Insufficient DNA sequence available in database --- p.119 / Chapter 4.3.1.4 --- Contamination by foreign DNA and amplification of undesirable DNA in sample mixture --- p.120 / Chapter 4.3.1.5 --- Amplification of degraded DNA --- p.121 / Chapter 4.3.1.6 --- Suggested regions for authentication of Dongchongxiacao and abalone based on FINS analysis results --- p.121 / Chapter 4.3.2 --- PCR with specific primers for targeted amplicons --- p.122 / Chapter 4.3.3 --- Other limitations of molecular approaches in authentication of food and herbs --- p.123 / Chapter 4.4 --- Further investigation --- p.124 / Chapter 4.5 --- Conclusion --- p.124 / References : --- p.126 / Chapter Appendix 1 --- Sequence alignment of 16S rDNA gene sequences of abalone for Haliotis-specific primer design --- p.144 / Chapter Appendix 2 --- Accession numbers of sequences of Dongchongxiacao and Cordyceps samples in this study --- p.149 / Chapter Appendix 3 --- Search results of CytB sequences of caterpillar host of Cordyceps samples based on BLAST search results from GenBank --- p.150 / Chapter Appendix 4 --- Search results of COI sequences of caterpillar host of Cordyceps samples based on BLAST search results from GenBank --- p.151 / Chapter Appendix 5 --- Search results of COI sequences of caterpillar host of Cordyceps samples based on BLAST search results from GenBank --- p.152 / Chapter Appendix 6 --- Sequence alignment of ITS sequences of Cordyceps samples and related sequences --- p.153 / Chapter Appendix 7 --- Sequence alignment of nrLSU sequences of Cordyceps samples and related sequences --- p.161 / Chapter Appendix 8 --- Sequence alignment of EF-lα sequences of Cordyceps samples and related sequences --- p.168 / Chapter Appendix 9 --- Sequence alignment of rpbl sequences of Cordyceps samples and related sequences --- p.173 / Chapter Appendix 10 --- "Sequence alignment of combined dataset of three regions (nrLSU, EF-lα and rpbl) of Cordyceps samples and related sequences" --- p.179 / Chapter Appendix 11 --- Sequences alignment of CytB sequences of caterpillar host of Cordyceps samples and related sequences --- p.188 / Chapter Appendix 12 --- Sequence alignment of COI sequences of caterpillar host of Cordyceps samples and related sequences --- p.191 / Chapter Appendix 13 --- Sequence alignment of COI sequences of Cordyceps samples D12-2 and D14 and related sequences --- p.195 / Chapter Appendix 14 --- Sequence distance matrix of ITS sequences of Cordyceps samples and related samples based on K2P algorithm --- p.196 / Chapter Appendix 15 --- Sequence distance matrix of nrLSU sequences of Cordyceps samples and related samples based on K2P algorithm --- p.203 / Chapter Appendix 16 --- Sequence distance matrix of EF-lα sequences of Cordyceps samples and related samples based on K2P algorithm --- p.208 / Chapter Appendix 17 --- Sequence distance matrix of rpbl sequences of Cordyceps samples and related samples based on K2P algorithm --- p.213 / Chapter Appendix 18 --- "Sequence distance matrix of combined dataset of three regions (nrLSU, EF-lα and rpbl) sequences of Cordyceps samples and related samples based on K2P algorithm" --- p.217 / Chapter Appendix 19 --- Sequence distance matrix of CytB sequences of caterpillar host of Cordyceps samples and related samples based on K2P algorithm --- p.219 / Chapter Appendix 20 --- Sequence distance matrix of COI sequences of caterpillar host of Cordyceps samples and related samples based on K2P algorithm --- p.223 / Chapter Appendix 21 --- Sequence alignment of chloroplast trnH-psbA sequences of Cordyceps sample D12-2 and related sequences --- p.226 / Chapter Appendix 22 --- Accession numbers of sequences of abalone and gastropod samples in this study --- p.227 / Chapter Appendix 23 --- Search results of 16S rDNA sequences of the abalone and gastropod samples based on BLAST search results from GenBank --- p.228 / Chapter Appendix 24 --- Search results of COI sequences of the abalone and gastropod samples based on BLAST search results from GenBank --- p.229 / Chapter Appendix 25 --- Search results of COI sequences of the abalone and gastropod samples based on BOLD-IDS --- p.230 / Chapter Appendix 26 --- Sequence alignment of 16S sequences of abalone samples and related sequences --- p.231 / Chapter Appendix 27 --- Sequence alignment of COI sequences of abalone samples and related sequences --- p.234 / Chapter Appendix 28 --- Sequence alignment of COI sequences of abalone product sample D2 and related sequences --- p.238 / Chapter Appendix 29 --- Sequence distance matrix of 16S sequences of abalone samples and related samples based on K2P algorithm --- p.239 / Chapter Appendix 30 --- Sequence distance matrix of COI sequences of abalone samples and related samples based on K2P algorithm --- p.243

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327450
Date January 2011
ContributorsChan, Wing Hin., Chinese University of Hong Kong Graduate School. Division of Life Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxi, 246 leaves : ill. (some col.) ; 30 cm.
CoverageChina
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0035 seconds