This is a master thesis of the Master of Science degree program in Applied Physics and Electrical Engineering (Y) at Linköping University. The goal of the projectis to develop an application for creating a map in real time from a video camera on a miniature unmanned aerial vehicle. This thesis project and report is a first exploratory study for this application. It implements a prototype method and evaluates it on sample sequences from an on-board video camera. The method first looks for good points to follow in the image and then tracks them in a sequence.The image is then pasted, or merged, together with previous images so that points from the different images align. Two methods to find good points to follow are examined with focus on real-time performance. The result is that the much faster FAST detector method yielded satisfactory results good enough to replace the slower standard method of the Harris-Stephens corner detector. It is also examined whether it is possible to assume that the ground is a flat surface in this application or if a computationally more expensive method estimating altitude information has to be used. The result is that at high altitudes or when the ground is close to flat in reality and the camera points straight downwards a two-dimensional method will do. If flying lower or with high objects in the picture, which is often the case in this application, it must to be taken into account that the points really are at different heights, hence the ground can not be assumed to be flat.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-76357 |
Date | January 2012 |
Creators | Wolkesson, Henrik |
Publisher | Linköpings universitet, Datorseende, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds