Return to search

Sparse and low rank constraints on optical flow and trajectories

In this dissertation we apply sparse constraints to improve optical flow and
trajectories. We apply sparsity in two ways. First, with 2-frame optical flow, we
enforce a sparse representation of flow patches using a learned overcomplete dictionary. Second, we apply a low rank constraint to trajectories via robust coupling. We begin with a review of optical flow fundamentals. We discuss the commonly used flow estimation strategies and the advantages and shortcomings of each. We introduce the concepts associated with sparsity including dictionaries and low rank matrices. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_30775
ContributorsGibson, Joel (author), Marques, Oge (Thesis advisor), Florida Atlantic University (Degree grantor), College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format88 p., application/pdf
RightsCopyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds