One of the greatest technological challenges of the world today is reducing the size and weight of the existing products to make them portable. Specifically, in electric vehicles such as electric cars, UAVs and aero planes, the size of battery chargers and inverters needs to be reduced so as to make space for more parts in these vehicles. Electromagnetic Interference (EMI) filters take up a more than 80 % of these power converters, the size of these filters can be reduced by pushing the switching frequency higher. High frequency operation (> 300 kHz) leads to a size in reduction of EMI filters though it also leads to an increase in switching losses thus compromising on efficiency. Thus, soft switching becomes necessary to reduce the losses, adding more electrical components to the converter to achieve soft switching is a common method. However, it increases the physical complexity of the system. Hence, advanced control methods are adopted for today's power converters that enable soft switching for devices specifically ZVS turn-on as the turn-off losses of next generation WBG devices are negligible. Thus, the goal of this research is to discover novel switching algorithms for soft turn-on.
The state-of the-art control methods namely CRM and TCM achieve soft turn-on by enabling bi-directional current such that the anti-parallel body diode starts conducting before the device is turned on. CRM and TCM result in variable switching frequency which leads to asynchronous operation in multi-phase and multi-converter systems. Hence, TCM is modified in this dissertation to achieve constant switching frequency, as the goal of this research is to be able to achieve ZVS turn-on for a three-phase converter. Further, Triangular Current Mode (TCM) to achieve soft switching and phase synchronization for three-phase two-level converters is proposed. It is shown how soft switching and sinusoidal currents can be achieved by operating the phases in a combination of discontinuous conduction mode (DCM), TCM and clamped mode. The proposed scheme can achieve soft switching ZVS turn-on for all the three phases. The algorithm is tested and validated on a GaN converter, 99% efficiency is achieved at 0.7 kW with a density of 110 W/in3.
The discussion of TCM in current literature is limited to unity power factor assumption, however this limits the algorithm's adoption in real world applications. It is shown how proposed TCM algorithm can be extended to accommodate phase shift with all the three phases operating in a combination of DCM+TCM+Clamped modes of operation. The algorithm is tested and validated on a GaN converter, 99% efficiency is achieved at 0.7 kVA with a density of 110 W/in3. TCM operation results in 33 % higher rms current which leads to higher conduction losses, as WBG devices have lower on-resistance, these devices are the ideal candidates for TCM operation, hence to accurately obtain the device parameters, a detailed device characterization is performed.
Further, proposed TCM+DCM+Clamped control algorithm is extended to three-level topologies, the control is modified to extract the advantage of reduced Common Mode Voltage (CMV) switching states of the three-level topology, the switching frequency can thus be pushed to 3 times higher as compared to state-of-the-art SVPWM control while maintaining close to 99 % efficiency. Two switching schemes are presented and both of them have a very small switching frequency variation (6%) as compared to state-of-the-art methods with >200% switching frequency variation. / Doctor of Philosophy / Power supplies are at the heart of today's advanced technological systems like aero planes, UAVs, electrical cars, uninterruptible power supplies (UPS), smart grids etc. These performance driven systems have high requirements for the power conversion stage in terms of efficiency, density and reliability. With the growing demand of reduction in size for electromechanical and electronic systems, it is highly desirable to reduce the size of the power supplies and power converters while maintaining high efficiency. High density is achieved by pushing the switching frequency higher to reduce the size of the magnetics. High switching frequency leads to higher losses if conventional hard switching methods are used, this drives the need for soft switching methods without adding to the physical complexity of the system. This dissertation proposes novel soft switching techniques to improve the performance and density of AC/DC and DC/AC converters at high switching frequency without increasing the component count. The concept and the features of this new proposed control scheme, along with the comparison of its benefits as compared to conventional control methodologies, have been presented in detail in different chapters of this dissertation.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/96397 |
Date | 10 January 2020 |
Creators | Haryani, Nidhi |
Contributors | Electrical Engineering, Burgos, Rolando, Boroyevich, Dushan, Southward, Steve C., Lu, Guo Quan, Kekatos, Vasileios |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds