Return to search

Synthesis, Modification, and Analysis of Silicate Cosmic Dust Analogues Using Ion-Beam Techniques

Silicates analogous to cosmic dust were synthesized, modified, and analyzed utilizing ion-beam techniques with Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD). Silicate dust is a common constituent in interstellar space, with an estimated 50% of dust produced in the stellar winds of M class Asymptotic Giant Branch (AGB) stars. Silicate dust acts as a surface upon which other chemicals may form (water ice for example), increasing significance in the cosmochemistry field, as well as laboratory astrophysics. Silicate formation in the stellar winds of AGB stars was simulated in the laboratory environment. Three sequential ion implantations of Fe-, MgH2-, and O- with thermal annealing were used to synthesize a mixture appropriate to silicate dust in the surface layers of a p-type Si substrate. Post implantation He+ irradiation was shown to preferentially induce crystalline formation in the analogue prior to thermal annealing. This effect is believed to originate in the ion-electron interaction in the Si substrate. The effects of ionization and ion energy loss due to electronic stopping forces is believed to precipitate nucleation in the amorphous media. For annealing temperatures of 1273 K, predominant quartz formation was found in the substrate, whereas lower annealing temperatures of 1000 K formed enstatite without post-implantation He+ irradiation, and olivine with He+ irradiation. Post annealed crystalline phase modification was investigated via x-ray diffraction and elemental compositions were investigated utilizing RBS. Finally, the interdiffusion of Fe and Mg at temperatures of 900-1100 K was investigated with RBS, and activation energies for interdiffusion were extracted for the transition from amorphous to crystalline phase in the silicate analogues. Fe had an interdiffusion energy of 1.8 eV and Mg 1.5eV. The produced analogues have similar properties to those inferred from infrared spectroscopy of the stellar winds of M-class AGB stars with an oxygen-rich outflow. This work established a method of silicate production using ion beam modifications, explored He+ irradiation effects in the annealed structures, and derived interdiffusion activation energies for Fe and Mg in the amorphous structure. Grain sizes were <100 nm with the observed formation of quartz, enstatite, and olivine.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1707354
Date08 1900
CreatorsYoung, Joshua Michael
ContributorsRout, Bibhudutta, Glass, Gary A., Weathers, Duncan L., Shemmer, Ohad
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxi, 132 pages, Text
RightsPublic, Young, Joshua Michael, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0026 seconds