Return to search

Optimalizace sledování síťových toků / Optimization of network flow monitoring

The thesis deals with optimization of network flow monitoring. Flow-based network traffic processing, that is, processing packets based on some state information associated to the flows which the packets belong to, is a key enabler for a variety of network services and applications. The number of simultaneous flows increases with the growing number of new services and applications. It has become a challenge to keep a state per each flow in a network device processing high speed traffic. A flow table, a structure with flow states, must be stored in a memory hierarchy. The memory closest to the processing is known as a flow cache. Flow cache management plays an important role in terms of its effective utilization, which affects the performance of the whole system. This thesis focuses on an automated design of cache replacement policy optimized to a deployment on particular networks. A genetic algorithm is proposed to automate this process. The genetic algorithm generates and evaluates evolved replacement policies by a simulation on obtained traffic traces. The proposed algorithm is evaluated by designing replacement policies for two variations of the cache management problem. The first variation is an evolution of the replacement policy with an overall low number of state evictions from the flow cache. The second variation represents an evolution of the replacement policy with a low number of evictions belonging to large flows only. Optimized replacement policies for both variations are found while experimenting with various encoding of the replacement policy and genetic operators. The newly evolved replacement policies achieve better results than other tested policies. The evolved replacement policy lowers the overall amount of evictions by ten percent in comparison with the best compared policy. The evolved replacement policy focusing on large flows lowers the amount of their evictions two times. Moreover, no eviction occurs for most of the large flows (over 90%). The evolved replacement policy offers better resilience against flooding the flow cache with large amount of short flows which are typical side effects of scanning or distributed denial of service activities. An extension of the replacement policy is also proposed. The extension complements the replacement policy with an additional information extracted from packet headers. The results show further decrease in the number of evictions when the extension is used.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:261221
Date January 2013
CreatorsŽádník, Martin
ContributorsLhotka,, Ladislav, Matoušek, Radomil, Sekanina, Lukáš
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds