This master’s thesis evaluates five existing Convolutional Neural Network (CNN) models for semantic segmentation of optical microscopy images of iron ore pellets. The models are PSPNet, FC-DenseNet, DeepLabv3+, BiSeNet and GCN. The dataset used for training and evaluation contains 180 microscopy images of iron ore pellets collected from LKAB’s experimental blast furnace in Luleå, Sweden. This thesis also investigates the impact of the dataset size and data augmentation on performance. The best performing CNN model on the task was PSPNet, which had an average accuracy of 91.7% on the dataset. Simple data augmentation techniques, horizontal and vertical flipping, improved the models’ average accuracy performance with 3.4% on average. From the results in this thesis, it was concluded that there are benefits to using CNNs for analysis of iron ore pellets, with time-saving and improved analysis as the two notable areas.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-74352 |
Date | January 2019 |
Creators | Svensson, Terese |
Publisher | Luleå tekniska universitet, Institutionen för system- och rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds