Estudaremos sistemas dinâmicos complexos da esfera de Riemann, e empregaremos técnicas do Formalismo Termodinâmico incluindo a fórmula de Bowen para provar que a dimensão de Hausdorff \'dim IND. H\' J( \'f IND. lâmbda\' ) do conjunto de Julia J( \'f IND. lâmbda\' ) de uma família holomorfa de funções racionais hiperbólicas f \'lambda\' define uma função real analítica do parâmetro \'lambda\' . Este resultado foi provado por Ruelle [44] em 1981. Daremos uma prova alternativa usando movimentos holomorfos. Trata-se de uma técnica inovadora, originalmente desenvolvida por Mañé, Sad e Sullivan no trabalho [31] sobre estabilidade estrutural de sistemas dinâmicos complexos / We shall study complex dynamical systems in the Riemann sphere and prove that the Hausdorff dimension \'dim IND. H\' J( \'f IND. Lãmbda\' ) of the Julia set J( \'f IND. lâmbda\' ) of an holomorphic family of hyperbolic rational maps \'f IND. lâmbda\' defines a real analytic map of the parameter \'lâmbda\': This result was proved in 1981 by D. Ruelle (see [44]). We give an alternative proof using holomorphic motions (see [31]), which was originally developed to study the structural stability problem of complex dynamical systems. Throughout this work, we shall use several tools of Thermodynamic Formalism, including Bowens formula
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06062011-152648 |
Date | 01 April 2011 |
Creators | Lima, Carlos Alberto Siqueira |
Contributors | Brandão, Daniel Smania |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds