[pt] Uma metodologia híbrida envolvendo simulação de grandes escalas e função densidade probabilidade transportada (LES-PDF) é desenvolvida para realizar simulações de escoamentos turbulentos reativos a baixo número de Mach. Equações de transporte de massa, da quantidade de movimento e de um escalar são resolvidas em conjunto com uma equação de estado no contexto do método LES. A modelagem da turbulência é realizada pelo modelo clássico de Smagorinsky e a taxa de produção química é representada pela lei de Arrhenius, para reação de combustão única, global e irreversível. As equações de transporte
são discretizadas no espaço e no tempo mediante o uso de esquemas de segunda ordem, sobre malhas cartesianas uniformes, no âmbito do método dos volumes finitos. Os efeitos da turbulência sobre a combustão na escala sub-filtro são determinados por uma abordagem lagrangeana da PDF, a qual faz uso da técnica de Monte Carlo: equações diferenciais estocásticas (SDE), equivalentes a equação de Fokker-Plank, são utilizadas para a variável de progresso da reação química. LES e PDF evoluem simultaneamente, trocando informações a cada passo de integração no tempo, de modo que o campo de velocidade filtrado, a freqüência turbulenta e o coeficiente de difusão são fornecidos por LES, enquanto o modelo
PDF retorna a taxa de reação química filtrada. Devido ao elevado número de partículas empregado no modelo PDF, a paralelização do programa lagrangeano é realizada, com base na estratégia de decomposição de domínios, implementada no programa euleriano. O modelo final é usado para simular uma configuração experimental que consiste de uma chama de metano e ar, estabilizada entre
escoamentos paralelos de gases queimados e gases frescos em um canal de seção transversal quadrada constante. Uma comparação detalhada entre os resultados obtidos e os dados experimentais é realizada. / [en] A hybrid Large Eddy Simulation / transported Probability Density Function (LES-PDF) computational model is developed to perform the numerical simulation of variable-density low Mach number turbulent reactive flows. Transport equations for mass, momentum, and scalars are solved together with an equation of state within the LES framework. Turbulence is modeled using the classical Smagorinsky closure whereas chemical reaction is first addressed thanks to a global single-step chemistry scheme. The governing equations are discretized using second order accuracy spatial and temporal approximations applied to uniform Cartesian meshes within a finite volume framework. The effects of subgrid scale (SGS) turbulence on the combustion processes are accounted for by means of a Lagrangian transported PDF model which is coupled with the LES solver. The PDF model relies on the use of a Monte Carlo technique: Stochastic Differential Equations (SDE), equivalent to the Fokker- Planck equations are considered for the progress variable. LES and PDF models are solved simultaneously, exchanging information at each integration time step, the velocity
field, turbulence frequency and diffusion coefficient being provided by LES, whereas the PDF model returns the filtered chemical reaction rate. Parallelization of the Lagrangian solver has been performed based on the domain decomposition strategy, the same strategy being already implemented for the eulerian LES solver. The resulting computational model is used to perform the simulation of an experimental test case consisting of a CH4-air flame established between two streams of fresh and burnt pilot gases in a constant area square cross section channel. The accuracy of the numerical solutions provided by the hybrid LESPDF
approach is assessed by detailed comparisons with experimental data.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:31783 |
Date | 18 October 2017 |
Creators | FERNANDO OLIVEIRA DE ANDRADE |
Contributors | LUIS FERNANDO FIGUEIRA DA SILVA, ARNAUD MURA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0029 seconds