Tranquilizer misuse is a behavior associated with substance use disorder. As of now there is only one published article that includes a predictive model on misuse of subscription tranquilizers. The aim of this study is to predict ongoing tranquilizer misuse whilst comparing three different methods of classification; (1) regularized logistic regression, (2) adaptive boosting and (3) support vector machines. Data from the National Survey of Drug Use and Health (NSDUH) from 2019 is used to predict misuse among the individuals in the sample from 2020. The regularized logistic regression and the support vector machines models both yield an AUC of 0.88, which is slightly higher than the adaptive boosting model. However, the support vector machine model yields a higher level of sensitivity, meaning that it is better at detecting individuals who misuse. Although the difference in performance between the methods is relatively small and is most likely caused by the fact that different methods perform differently depending on the characteristics of the data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-466497 |
Date | January 2022 |
Creators | Norén, Ida |
Publisher | Uppsala universitet, Statistiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds