Abstract
In a two-level hierarchical linear model(HLM2), the outcome as well as covariates may have missing values at any of the levels. One way to analyze all available data in the model is to estimate a multivariate normal joint distribution of variables, including the outcome, subject to missingness conditional on covariates completely observed by maximum likelihood(ML); draw multiple imputation (MI) of missing values given the estimated joint model; and analyze the hierarchical model given the MI [1,2]. The assumption is data missing at random (MAR). While this method yields efficient estimation of the hierarchical model, it often estimates the model given discrete missing data that is handled under multivariate normality. In this thesis, we evaluate how robust it is to estimate a hierarchical linear model given discrete missing data by the method. We simulate incompletely observed data from a series of hierarchical linear models given discrete covariates MAR, estimate the models by the method, and assess the sensitivity of handling discrete missing data under the multivariate normal joint distribution by computing bias, root mean squared error, standard error, and coverage probability in the estimated hierarchical linear models via a series of simulation studies. We want to achieve the following aim: Evaluate the performance of the method handling binary covariates MAR. We let the missing patterns of level-1 and -2 binary covariates depend on completely observed variables and assess how the method handles binary missing data given different values of success probabilities and missing rates.
Based on the simulation results, the missing data analysis is robust under certain parameter settings. Efficient analysis performs very well for estimation of level-1 fixed and random effects across varying success probabilities and missing rates. MAR estimation of level-2 binary covariate is not well estimated when the missing rate in level-2 binary covariate is greater than 10%.
The rest of the thesis is organized as follows: Section 1 introduces the background information including conventional methods for hierarchical missing data analysis, different missing data mechanisms, and the innovation and significance of this study. Section 2 explains the efficient missing data method. Section 3 represents the sensitivity analysis of the missing data method and explain how we carry out the simulation study using SAS, software package HLM7, and R. Section 4 illustrates the results and useful recommendations for researchers who want to use the missing data method for binary covariates MAR in HLM2. Section 5 presents an illustrative analysis National Growth of Health Study (NGHS) by the missing data method. The thesis ends with a list of useful references that will guide the future study and simulation codes we used.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-5431 |
Date | 01 January 2016 |
Creators | Zheng, Xiyu |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.002 seconds