Return to search

Proposta de um processo sistemático baseado em métricas não-dicotômicas para avaliação de predição de links em redes de coautoria. / Proposal of a systematic process based on non-dichotomic metrics for evaluation of link prediction in co-authorship networks.

Predição de Links é uma área de pesquisa importante no contexto de Análise de Redes Sociais tendo em vista que predizer sua evolução é um mecanismo útil para melhorar e propiciar a comunicação entre usuários. Nas redes de coautoria isso pode ser utilizado para recomendação de usuários com interesses de pesquisa comuns. Este trabalho propõe um processo sistemático baseado em métricas não-dicotômicas para avaliação de predição de links em redes de coautoria, sendo considerada a definição de métodos para as seguintes tarefas identificadas: seleção de dados, determinação de novos links e avaliação dos resultados. Para seleção de dados definiu-se um sensor fuzzy baseado em atributos dos nós. O uso de composições fuzzy foi considerado para determinação de novos links _ponderados_ entre dois autores, adotando-se não apenas atributos dos nós, mas também a combinação de atributos de outros links observados. O link ponderado é denominado _qualidade da relação_ e é obtido pelo uso de propriedades estruturais da rede. Para avaliação dos resultados foi proposta a curva ROC fuzzy, que permite explorar os pesos dos links não apenas para ordenação dos exemplos. / Link prediction is an important research line in the Social Network Analysis context, as predicting the evolution of such nets is a useful mechanism to improve and encourage communication among users. In co-authorship networks, it can be used for recommending users with common research interests. This work proposes a systematic process based on non-dichotomic metrics for evaluation of link prediction in co-authorship networks considering the definition of methods for the following tasks: data selection, new link determination and result evaluation. Fuzzy sensor based on node attributes is adopted for data selection. Fuzzy compositions are used to predict new link weights between two authors, adopting not only attributes nodes, but also the combination of attributes of other observed links. The link weight called _relation quality_ is obtained by using structural features of the social network. The fuzzy roc curve is used for results evaluation, allowing us to consider the weights of the links and not only the ordering of examples.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-01062011-142033
Date17 March 2011
CreatorsElisandra Aparecida Alves da Silva
ContributorsMarco Túlio Carvalho de Andrade, Renata de Matos Galante, Jaime Simão Sichman, Flávio Soares Corrêa da Silva, Edison Spina
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds