Neste trabalho estudamos o modelo de regressão logística com erro de medida nas covariáveis. Abordamos as metodologias de estimação de máxima pseudoverossimilhança pelo algoritmo EM-Monte Carlo, calibração da regressão, SIMEX e naïve (ingênuo), método este que ignora o erro de medida. Comparamos os métodos em relação à estimação, através do viés e da raiz do erro quadrático médio, e em relação à predição de novas observações, através das medidas de desempenho sensibilidade, especificidade, verdadeiro preditivo positivo, verdadeiro preditivo negativo, acurácia e estatística de Kolmogorov-Smirnov. Os estudos de simulação evidenciam o melhor desempenho do método de máxima pseudoverossimilhança na estimação. Para as medidas de desempenho na predição não há diferença entre os métodos de estimação. Por fim, utilizamos nossos resultados em dois conjuntos de dados reais de diferentes áreas: área médica, cujo objetivo está na estimação da razão de chances, e área financeira, cujo intuito é a predição de novas observações. / We study the logistic model when explanatory variables are measured with error. Three estimation methods are presented, namely maximum pseudo-likelihood obtained through a Monte Carlo expectation-maximization type algorithm, regression calibration, SIMEX and naïve, which ignores the measurement error. These methods are compared through simulation. From the estimation point of view, we compare the different methods by evaluating their biases and root mean square errors. The predictive quality of the methods is evaluated based on sensitivity, specificity, positive and negative predictive values, accuracy and the Kolmogorov-Smirnov statistic. The simulation studies show that the best performing method is the maximum pseudo-likelihood method when the objective is to estimate the parameters. There is no difference among the estimation methods for predictive purposes. The results are illustrated in two real data sets from different application areas: medical area, whose goal is the estimation of the odds ratio, and financial area, whose goal is the prediction of new observations.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-23082013-172348 |
Date | 27 June 2013 |
Creators | Rodrigues, Agatha Sacramento |
Contributors | Ferrari, Silvia Lopes de Paula |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds