Return to search

Fabrication of PDMS Waveguide Coated with Gold Nano-particles and Its Localized SPR Applications

This research proposes a novel polymer-based optical waveguide made with Polydimethylsiloxane (PDMS) for optical detection applications. Alternative to other fiber-based sensor, the proposed optical sensor uses PDMS waveguide as the main sensing component. PDMS has excellent optical properties which is essential for bio-photonic detection, including highly optical transparency, good flexibility and high bio-compatibility.
Uncured PDMS polymer is cast in a Teflon tubing to form the PDMS rod. Since the reflective index of PDMS is as high as 1.43, that the bare PDMS can be an optical waveguide while the reflective index of the surrounding media is smaller than 1.43. The cast PDMS waveguide is then connect with plastic optical fibers to form the proposed optical waveguide system. In order to improve the optical performance of the PDMS waveguide, a surface coating process is used to reduce the surface roughness of the PDMS waveguide. The measured insertion loss with and without performing the surface coating procedure is 1.14 and 1.71dB/cm, respectively. Once the PDMS waveguide is formed, Au nanoparticles (Au-Nps) were coated on the PDMS surface with the assistance of a positive charge polymer of PDDA to form an optical waveguide capable of localized SPR detection. In addition, an atmospheric plasma treating process is used to enhance the coating ratio and speed of Au-Nps. UV-VIS spectrum and the SEM observation of the Au-particle coated PDMS waveguide confirm that the plasma treatment process significantly improves the coating results of Au-Nps.
Liquid samples with different refractive index were used to demonstrate the LSPR sensing ability of the fabricated optical waveguide. The label free DNA detection was demonstrated by the system. The thiolated single strand DNA was modify on the PDMS optical waveguide as a DNA probe and bound with target DNA by DNA hybridization. The detection limit is as low as 10 pM. This research provides a simple and fast fabrication method to fabricate waveguide-based LSPR sensors.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0901108-155420
Date01 September 2008
CreatorsChen, Yi-chieh
ContributorsTseng Wei Lung, Lung-Ming Fu, Yang, Chii-Rong, Lin, Che-Hsin, Lee, Chia-Yen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0901108-155420
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0015 seconds