Marine aerosols have attracted increasing attention over the past 15 years because of their potential significance for global climate modelling. The size distribution of these aerosols extends from super-micrometer sea salt mode particles down through 150 nm accumulation mode particles, 40 nm Aitken mode particles and nucleation mode particles which extend from 25 nm right down to clusters of a few molecules. The process by which the submicrometer modes form and grow and their composition have remained topics of debate throughout this time in large part because of the difficulties associated with determining their composition and relating it to proposed models of the formation process. The work compared the modality of marine aerosol influencing the South-east-Queensland region with that of other environmental aerosols in the region. The aerosol was found to be consistent with marine aerosols observed elsewhere with concentrations below 1000 cm-3 and frequently exhibiting the distinct bimodal structure associated with cloud processing, consisting of an Aitken mode at approximately 40 nm, an accumulation mode in the range 100-200 nm and a coarse mode attributed to sea salt between 600 and 1200 nm. This work included the development of two new techniques for aerosol research. The first technique measures aerosol density using a combination of aerosol size distribution and gravimetric mass concentration measurements. This technique was used to measure the density of a number of submicrometer aerosols including laboratory generated NaCl aerosol and ambient aerosol. The densities for the laboratory generated aerosols were found to be similar to those for the bulk materials used to produce them. The technique, extended to super-micrometer particle size range may find application in ambient aerosol research where it could be used to discriminate between periods when the aerosol is dominated by NaCl and periods when the density is more representative of crustal material or sulfates. The technique may also prove useful in laboratory or industrial settings for investigating particle density or in case where the composition is known, morphology and porosity. The second technique developed, integrates the existing physicochemical techniques of volatilisation and hygroscopic growth analysis to investigate particle composition in terms of both the volatilisation temperatures of the chemical constituents and their contribution to particle hygroscopic behaviour. The resulting volatilisation and humidification tandem differential mobility analyser or VH-TDMA, has proven to be a valuable research tool which is being used in ongoing research. Findings of investigations relating the composition of the submicrometer marine aerosol modes to candidate models for their formation are presented. Sea salt was not found in the numerically dominant particle type in coastal nucleation mode or marine Aitken and accumulation modes examined on the Southeast Queensland coast during periods where back trajectories indicated marine origin. The work suggests that all three submicrometer modes contain the same four volatile chemical species and an insoluble non-volatile residue. The volatility and hygroscopic behaviours of the particles are consistent with a composition consisting of a core composed of sulfuric acid, ammonium sulfate and an iodine oxide coated with a volatile organic compound. The volume fraction of the sulfuric acid like species in the particles shows a strong dependence on particle size.
Identifer | oai:union.ndltd.org:ADTP/265110 |
Date | January 2005 |
Creators | Johnson, Graham Richard |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright Graham Richard Johnson |
Page generated in 0.0061 seconds