Return to search

Selected Problems on Matroid Minors

This dissertation begins with an introduction to matroids and graphs. In the first chapter, we develop matroid and graph theory definitions and preliminary results sufficient to discuss the problems presented in the later chapters. These topics include duality, connectivity, matroid minors, and Cunningham and Edmonds's tree decomposition for connected matroids.
One of the most well-known excluded-minor results in matroid theory is Tutte's characterization of binary matroids. The class of binary matroids is one of the most widely studied classes of matroids, and its members have many attractive qualities. This motivates the study of matroid classes that are close to being binary. One very natural such minor-closed class Z consists of those matroids M such that the deletion or the contraction of e is binary for all elements e of M. Chapter 2 is devoted to determining the set of excluded minors for Z.
Duality plays a central role in the study of matroids. It is therefore natural to ask the
following question: which matroids guarantee that, when present as minors, their duals are present as minors? We answer this question in Chapter 3. We also consider this problem with additional constraints regarding the connectivity and representability of the matroids in question. The main results of Chapter 3 deal with 3-connected matroids.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07042014-133808
Date14 July 2014
CreatorsTaylor, Jesse
ContributorsLitherland, Richard, Ricks, Thomas, Perlis, Robert, Ding, Guoli, Oporowski, Bogdan, Oxley, James
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07042014-133808/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds