Return to search

Biomechanics of the foot and ankle during ice hockey skating

This study describes the biomechanics of the foot and ankle during the transitional and steady state skating strides using kinematic, kinetic, and myoelectric measures. A data set for five collegiate hockey players was completed (mean +/- SD: age = 21.8 +/- 1.9 years, height = 1.81 +/- 0.05 m, mass = 83.3 +/- 8.0 kg). Three acceleration strides and a constant velocity stride were examined on ice. An electrogoniometer at the ankle was used to measure angular displacement and velocity values. Myoelectric activation patterns were measured at the vastus medialis, tibialis anterior, peroneus longus, and medial gastrocnemius of the right lower limb. Kinetic pressure profiles were measured using piezo resistive fabric sensors providing accurate pressure measurement within the narrow confines of the skate boot-to-foot/ankle interface. Sixteen flexible piezo-resistive sensors (1.2 cm x 1.8 cm x 0.2 cm thick) were taped to discrete anatomical surfaces of the plantar, dorsal, medial and lateral surface of the foot, as well as to the posterior aspect of heel and leg. Repeated measures ANOVAs and Tukey post hoc tests found few significant differences among stride variables; however insights into the mechanics of ice hockey skating at the foot and ankle are given.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.81326
Date January 2004
CreatorsDewan, Curt
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Kinesiology and Physical Education.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002187863, proquestno: AAIMR06389, Theses scanned by UMI/ProQuest.

Page generated in 0.0173 seconds