Return to search

Utvärdering av Multilayer Perceptron modeller för underlagsdetektering / Evaluation of Multilayer Perceptron models for surface detection

Antalet enheter som är uppkopplade till internet, Internet of Things (IoT), ökar hela tiden. År 2035 beräknas det finnas 1000 miljarder Internet of Things-enheter. Samtidigt som antalet enheter ökar, ökar belastningen på internet-nätverken som enheterna är uppkopplade till. Internet of Things-enheterna som finns i vår omgivning samlar in data som beskriver den fysiska tillvaron och skickas till molnet för beräkning. För att hantera belastningen på internet-nätverket flyttas beräkningarna på datan till IoT-enheten, istället för att skicka datan till molnet. Detta kallas för edge computing. IoT-enheter är ofta resurssnåla enheter med begränsad beräkningskapacitet. Detta innebär att när man designar exempelvis "machine learning"-modeller som ska köras med edge computing måste algoritmerna anpassas utifrån de resurser som finns tillgängliga på enheten. I det här arbetet har vi utvärderat olika multilayer perceptron-modeller för mikrokontrollers utifrån en rad olika experiment. "Machine learning"-modellerna har varit designade att detektera vägunderlag. Målet har varit att identifiera hur olika parametrar påverkar "machine learning"-systemen. Vi har försökt att maximera prestandan och minimera den mängd fysiskt minne som krävs av modellerna. Vi har även behövt förhålla oss till att mikrokontrollern inte haft tillgång till internet. Modellerna har varit ämnade att köras på en mikrokontroller "on the edge". Datainsamlingen skedde med hjälp av en accelerometer integrerad i en mikrokontroller som monterades på en cykel. I studien utvärderas två olika "machine learning"-system, ett som är en kombination av binära klassificerings modeller och ett multiklass klassificerings system som framtogs i ett tidigare arbete. Huvudfokus i arbetet har varit att träna modeller för klassificering av vägunderlag och sedan utvärdera modellerna. Datainsamlingen gjordes med en mikrokontroller utrustad med en accelerometer monterad på en cykel. Ett av systemen lyckas uppnå en träffsäkerhet på 93,1\% för klassificering av 3 vägunderlag. Arbetet undersöker även hur mycket fysiskt minne som krävs av de olika "machine learning"-systemen. Systemen krävde mellan 1,78kB och 5,71kB i fysiskt minne. / The number of devices connected to the internet, the Internet of Things (IoT), is constantly increasing. By 2035, it is estimated to be 1,000 billion Internet of Things devices in the world. At the same time as the number of devices increase, the load on the internet networks to which the devices are connected, increases. The Internet of Things devices in our environment collect data that describes our physical environment and is sent to the cloud for computation. To reduce the load on the internet networks, the calculations are done on the IoT devices themselves instead of in the cloud. This way no data needs to be sent over the internet and is called edge computing. In edge computing, however, other challenges arise. IoT devices are often resource-efficient devices with limited computing capacity. This means that when designing, for example, machine learning models that are to be run with edge computing, the models must be designed based on the resources available on the device. In this work, we have evaluated different multilayer perceptron models for microcontrollers based on a number of different experiments. The machine learning models have been designed to detect road surfaces. The goal has been to identify how different parameters affect the machine learning systems. We have tried to maximize the performance and minimize the memory allocation of the models. The models have been designed to run on a microcontroller on the edge. The data was collected using an accelerometer integrated in a microcontroller mounted on a bicycle. The study evaluates two different machine learning systems that were developed in a previous thesis. The main focus of the work has been to create algorithms for detecting road surfaces. The data collection was done with a microcontroller equipped with an accelerometer mounted on a bicycle. One of the systems succeeds in achieving an accuracy of 93.1\% for the classification of 3 road surfaces. The work also evaluates how much physical memory is required by the various machine learning systems. The systems required between 1.78kB and 5,71kB of physical memory.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-43469
Date January 2021
CreatorsMidhall, Ruben, Parmbäck, Amir
PublisherMalmö universitet, Fakulteten för teknik och samhälle (TS)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0034 seconds