Netgi tobuliausiai suplanuotame tyrime atsiranda įvairių rūšių klaidų, dėl kurių gali būti gauti nepatikimi ar nepakankamai tikslūs tyrimo rezultatai, taigi labai svarbu kiek įmanoma labiau sumažinti tų klaidų įtaką tyrimo rezultatams – sumų, vidurkių, santykių įvertiniams. Vienas iš galimų statistinio tyrimo klaidų tipų yra klaidos dėl neatsakymo į apklausą. Jos atsiranda tuomet, kai atsakytojas neatsako į vieną ar kelis klausimyno klausimus. Neatsakymai tyrimuose pasitaiko dėl įvairių priežasčių. Jie iššaukia standartinių įvertinių, kuriuose neatsižvelgiama į neatsakymus, nuokrypį nuo tikrųjų mus dominančių reikšmių, o taip pat šių įvertinių dispersijos padidėjimą. Dabartinėje praktikoje neatsakymai į apklausą nagrinėjami dviem požiūriais: visų pirma bandoma išvengti arba sumažinti neatsakymų lygį. Yra nemažai literatūros ir metodologinės medžiagos tyrinėjančios neatsakymų priežastis bei pateikiančios rekomendacijas kaip sumažinti neatsakymų lygį, tačiau, kai tyrime jau yra neatsakymų, dominančius įvertinius reikia sukonstruoti taip, kad tyrimo rezultatai būtų kuo tikslesni. Neatsakymų sukeliamiems tyrimo rezultatų nuokrypiams sumažinti naudojami įvairūs būdai. Vienas tokių metodų yra praleistų reikšmių įrašymas. Įrašymas – tai trūkstamų duomenų užpildymo būdas, kuris yra labai naudingas analizuojant nepilnas duomenų sekas. Jis išsprendžia duomenų trūkumo problemą duomenų analizės pradžioje. Praleistų reikšmių įrašymo metodika šiuo metu sparčiai vystosi, galima rasti... [toliau žr. visą tekstą] / Nonresponse has been a matter of concern for several decades in survey theory and practice. The problem can be viewed from two different angles: the prevention or avoidance of nonresponse before it occurs, and the special estimation techniques when nonresponse has occurred. The objective of this work is to describe main methods of estimation when nonresponse occurs. Special attention is drawn on one nonresponse estimation method – imputation. Imputation is the procedure when missing values for one or more study variables are “filled in” with substitutes constructed according to some rules, or observed values for elements other than nonrespondents. In this work imputation methods based on some of the more commonly used statistical rules are considered. Some of them are tested on data set having the same distribution as the data of the real survey taken in Statistics Lithuania. The imputation methods are compared with each other and the best imputation method for this data set is picked up. Special attention is paid on regression imputation.
Identifer | oai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2006~D_20081203_184028-21319 |
Date | 04 March 2009 |
Creators | Utovkaitė, Jurgita |
Contributors | Plikusas, Aleksandras Ernestas, Bagdonavičius, Algirdas, Vilnius University |
Publisher | Lithuanian Academic Libraries Network (LABT), Vilnius University |
Source Sets | Lithuanian ETD submission system |
Language | Lithuanian |
Detected Language | Unknown |
Type | Master thesis |
Format | application/pdf |
Source | http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20081203_184028-21319 |
Rights | Unrestricted |
Page generated in 0.0035 seconds