Return to search

Improving Scalability of Evolutionary Robotics with Reformulation

Creating systems that can operate autonomously in complex environments is a challenge for contemporary engineering techniques. Automatic design methods offer a promising alternative, but so far they have not been able to produce agents that outperform manual designs. One such method is evolutionary robotics. It has been shown to be a robust and versatile tool for designing robots to perform simple tasks, but more challenging tasks at present remain out of reach of the method.
In this thesis I discuss and attack some problems underlying the scalability issues associated with the method. I present a new technique for evolving modular networks. I show that the performance of modularity-biased evolution depends heavily on the morphology of the robot’s body and present a new method for co-evolving morphology and modular control.
To be able to reason about the new technique I develop reformulation framework: a general way to describe and reason about metaoptimization approaches. Within this framework I describe a new heuristic for developing metaoptimization approaches that is based on the technique for co-evolving morphology and modularity. I validate the framework by applying it to a practical task of zero-g autonomous assembly of structures with a fleet of small robots.
Although this work focuses on the evolutionary robotics, methods and approaches developed within it can be applied to optimization problems in any domain.

Identiferoai:union.ndltd.org:uvm.edu/oai:scholarworks.uvm.edu:graddis-1957
Date01 January 2018
CreatorsBernatskiy, Anton
PublisherScholarWorks @ UVM
Source SetsUniversity of Vermont
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate College Dissertations and Theses

Page generated in 0.0023 seconds