Return to search

The influence of thermal effects on structural health monitoring of Attridge Drive overpass

Structural Health Monitoring (SHM) comprises a wide range of techniques for the condition and damage assessment of an existing structure. Vibration-based damage detection (VBDD) techniques, a class of SHM methods, use changes in the dynamic properties (i.e., natural frequencies, mode shapes and damping characteristics) of structures to detect deterioration or damage. The application of VBDD methods to simple structures in a well-controlled laboratory environment has gained some successful results. However, the practical field application of VBDD still faces significant challenges since vibration measurement is subject to the influences of high levels of uncertainty in environmental, structural and loading conditions. In this thesis, the influence of temperature variations on the application of VBDD methods to an in-service complex structure was experimentally and numerically studied. The structure studied was the Attridge Drive overpass in Saskatoon, Saskatchewan.<p>
The main objective of this research was to assess the influence of temperature variation on the dynamic properties (natural frequencies and mode shapes) of the overpass, and on the ability of VBDD methods to detect and locate damage. Field dynamic measurements were made on the bridge on numerous occasions under a wide variety of ambient temperatures, using high sensitivity accelerometers and a temperature sensor. Dynamic excitation was provided solely by ambient traffic loading.<p>
Finite element models of the overpass were also created and manually calibrated to measured field data. The models were used to simulate the dynamic behaviour of the bridge at a variety of temperatures and under various states of small-scale damage. Numerical analysis was conducted to study the effect of ambient temperature on structures dynamic characteristics and to differentiate the patterns of mode shape changes caused by damage and ambient temperature.
It was concluded that the change of ambient temperature mainly affects the elastic modulus of the construction materials and therefore stiffness of the entire bridge. As a result, the eigenfrequencies and mode shapes of the structure are influenced.<p>
The dynamic properties extracted from measured experiment data showed an approximately bilinear relationship between the three first natural frequencies and the ambient temperature. The natural frequencies for all three modes increased when the temperature fell.<p>
It was also found that, conceptually, it is possible to distinguish the patterns of mode shape changes caused by small-scale damage from those due to thermal effects, but only if a sufficient number of sensors are used to measure the mode shapes; in addition, those sensors must be located close to the damage location.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-10182009-135207
Date28 October 2009
CreatorsPham, Tuan Anh
ContributorsWegner, Leon, Sparling, Bruce, Feldman, Lisa, Boulfiza, Mohamed, Putz, Gordon, Johnston, James
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-10182009-135207/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds