Return to search

Silicon Photonics for All-Optical Processing and High-Bandwidth-Density Interconnects

Silicon photonics has emerged in recent years as one of the leading technologies poised to enable penetration of optical communications deeper and more intimately into computing systems than ever before. The integration potential of power efficient WDM links at the first level package or even deeper has been a strong driver for the rapid development this field has seen in recent years. The integration of photonic communication modules with very high bandwidth densities and virtually no bandwidth-distance limitations at the short reach regime of high performance computers and data centers has the potential to alleviate many of the bandwidth bottlenecks currently faced by board, rack, and facility levels. While networks on chip for chip multiprocessors (CMP) were initially deemed the target application of silicon photonic components, it has become evident in recent years that the initial lower hanging fruit is the CMP's I/O links to memory as well as other CMPs. The first chapter of the thesis provides more detailed motivation for the integration of silicon photonic modules into compute systems and surveys some of the recent developments in the field. The second chapter then proceeds to detail a technical case study of silicon photonic microring-based WDM links' scalability and power efficiency for these chip I/O applications which could be developed in the intermediate future. The analysis, initiated originally for a workshop on optical and electrical board and rack level interconnects, looks into a detailed model of the optical power budget for such a link capturing both single-channel aspects as well as WDM-operation-related considerations which are unique for a microring physical characteristics. The holistic analysis for the full link captures the wavelength-channel-spacing dependent characteristics, provides some methodologies for device design in the WDM-operation context, and provides performance predictions based on current best-of-class silicon photonic devices. The key results of the analysis are the determination of upper bounds on the aggregate achievable communication bandwidth per link, identifying design trade-offs for bandwidth versus power efficiency, and highlighting the need for continued technological improvements in both laser as well as photodetector technologies to allow acceptable power efficiency operation of such systems.The third chapter, while continuing on the theme silicon photonic high bandwidth density links, proceeds to detail the first experimental demonstration and characterization of an on-chip spatial division multiplexing (SDM) scheme based on microrings for the multiplexing and demultiplexing functionalities. In the context of more forward looking optical network-on-chip environments, SDM-enabled WDM photonic interconnects can potentially achieve superior bandwidth densities per waveguide compared to WDM-only photonic interconnects. The microring-based implementation allows dynamic tuning of the multiplexing and demultiplexing characteristic of the system which allows operation on WDM grid as well device tuning to combat intra-channel crosstalk. The characterization focuses on the first reported power penalty measurements for on-chip silicon photonic SDM link showing minimal penalties achievable with 3 spatial modes concurrently operating on a single waveguide with 10-Gb/s data carried by each mode. The chapter also details the first demonstration of WDM combined with SDM operation with six separate wavelength-and-spatial 10-Gb/s channels with error free operation and low power penalties. The fourth, fifth, and sixth chapters shift in topic from the application of silicon photonics to communication links to the evolving use of silicon waveguides for nonlinear all-optical processing. The unique tight mode confinement in sub-micron cross-sections combined with the high response of silicon have motivated the development of four-wave mixing (FWM)-based processing silicon devices. The key feature of the silicon platform for these nonlinear processing platforms is the ability to finely and uniformly control the dispersive properties of the optical structures in a way that enables completely offsetting the material dispersion and achieve dispersion profiles required for effective parametric interaction of waves in the optical structures. Chapter four primarily introduces and motivates nonlinear processing in communication applications and focuses on recent achievements in non-silicon and silicon FWM platforms. Chapter five describes some of the author's contributions on parametric processing of high speed data in silicon nonlinear devices, with first of a kind demonstrations of wavelength conversion of 160-Gb/s optically time division multiplexed (OTDM) data as well as the wavelength-multicasting of a 320-Gb/s OTDM stream. The chapter then details a methodical characterization and demonstration of several record wavelength conversion experiments of data in silicon with 40-Gb/s data wavelength-converted across more than 100 nm with only 1.4-dB of power penalties as well as the wavelength and format conversion of 10-Gb/s data across up to 168 nm with sensitivity gains stemming from the format conversion of about 2 dB and a residual conversion penalty of only 0.1 dB, achieved by implementing an improved experimental setup. Both experiments highlight the performance uniformity of the conversion process for a wide range of probe-idler detuning settings, showcasing the silicon platform's unique broadband phase matching properties. The sixth chapter presents a slight shift in motivation for parametric processing from traditional telecom-wavelength applications to functionalities developed targeting mid-IR operation. Parametric-processing in the silicon platform at long wavelengths holds large potential for performance improvements due to the elimination of two-photon absorption in silicon at long wavelengths as well as silicon's dispersion engineering capabilities which uniquely position the silicon platform for effective phase matching of significantly wavelength detuned waves. Four-wave mixing signal generation and reception at mid-IR wavelengths are attractive candidates for tunable flexible operation with modulation and detection speeds which are currently only available at telecom wavelengths. With this vision in mind, several contributions detailing extension of FWM functionalities in silicon to operate at wavelengths close to 2 μm with performance equivalent to much smaller detuning setting measurements. The contributions detail the experimental demonstration of the first silicon optical processing functionalities achieved at such long wavelengths including the wavelength conversion and unicast of 10-Gb/s signals with up to 700 nm of probe-idler detuning, the combined two-stage 10-Gb/s FWM-link in which both data generation and detection at 1900 nm is facilitated by parametric processing in silicon with only 2.1-dB overall penalty, the first ever 40-Gb/s receiver at 1900 nm based on a FWM stage for simultaneous temporal demultiplexing and wavelength conversion, and lastly, the demonstration of a 40-Gb/s FWM-link operation with only 3.6 dB of penalty. The chapter concludes with a short discussion on possible extensions to enable silicon parametric processing at even longer wavelengths targeting the mid-IR spectral transmission window of 3-5 μm.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8S75GC6
Date January 2013
CreatorsOphir, Noam
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0033 seconds