Return to search

Study on texture and mechanical properties of electrodeposited Ni and NiFe alloys

Nanoindentation has been widely used for measuring mechanical behavior of nanocrystalline (nc) metals that cannot be measured by tensile and compressive test. The hardness and elastic modulus are usually obtained by Oliver and Pharr method. However, this may not be true for materials showing viscoelastic characteristics. This study aims at clarifying the effect of testing parameters, especially loading rate and holding time, on the hardness and elastic modulus of a nanocrystalline Fe-51Ni coating obtained in nanoindentation tests as the material exhibits anelastic and creep characteristics. An analytical method based on the correspondence principle for linear viscoelasticity was developed. The holding displacement-time data obtained in indentation creep tests at a high loading rate of 20 mN/s were analyzed and material parameters related to the elastic, anelastic and creep characteristic were derived using a model containing one Maxwell unit and two Kelvin units. The anelastic deformation thus contains at least two relaxation processes having relaxation times of 0.37 s and 6.8 s, respectively and the creep deformation is described by a viscosity value of 4.2x104 GPa.s for the alloy in an as-deposited state.
Moreover, electrodeposited (ED) Ni was analyzed by electron backscatter diffraction. Results indicated that the ED Ni exhibits a bimodal distribution of grain size. The grains having sizes larger than 2 £gm shows a strong fiber texture of <100>//ND, whereas the small grains (<2 £gm) are mainly randomly oriented.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0616111-014000
Date16 June 2011
CreatorsYi, Lian-Hao
ContributorsN. J. Ho, L. W. Chang, P. W. Kao
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0616111-014000
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0023 seconds