Return to search

Characterization of Prose by Rhetorical Structure for Machine Learning Classification

Measures of classical rhetorical structure in text can improve accuracy in certain types of stylistic classification tasks such as authorship attribution. This research augments the relatively scarce work in the automated identification of rhetorical figures and uses the resulting statistics to characterize an author's rhetorical style. These characterizations of style can then become part of the feature set of various classification models.
Our Rhetorica software identifies 14 classical rhetorical figures in free English text, with generally good precision and recall, and provides summary measures to use in descriptive or classification tasks. Classification models trained on Rhetorica's rhetorical measures paired with lexical features typically performed better at authorship attribution than either set of features used individually. The rhetorical measures also provide new stylistic quantities for describing texts, authors, genres, etc.

Identiferoai:union.ndltd.org:nova.edu/oai:nsuworks.nova.edu:gscis_etd-1346
Date01 January 2015
CreatorsJava, James
PublisherNSUWorks
Source SetsNova Southeastern University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceCEC Theses and Dissertations

Page generated in 0.0022 seconds