As the speed and power demands on Buck converters continue to increase, it has become time to replace the linearly-controlled conventional Buck converter. Digital circuits, such as microprocessors, are requiring higher dynamic currents, at lower voltages, than ever before.
Traditionally, such Buck converters have been controlled by linear voltage-mode or current-mode control methods. While these controllers offer such advantages as fixed switching frequencies and zero steady-state error, their reaction speed is inherently limited by their bandwidth which is a fraction of the converter switching frequency. Therefore, to improve the transient response of a Buck converter in a practical manner, four novel ideas are presented in this thesis.
The first contribution is an analog “charge balance controller”. The control method utilizes the concept of capacitor charge balance to achieve a near-optimal transient response for Buck converters undergoing a rapid load change. Unlike previous work, the proposed controller does not require expensive and/or slow analog multipliers/dividers. In addition, the nominal inductance value is not required by the proposed controller. Simulation and experimental results demonstrate a significant improvement in transient performance over that of a linear voltage-mode controller.
For low duty cycle applications, the unloading transient performance of a Buck converter tends to be poor when compared to the corresponding loading transient performance. Therefore, the second contribution is an auxiliary circuit and an analog auxiliary controller which drastically improves the performance of a Buck converter undergoing an unloading transient. Significant overshoot reduction was observed over that of a linearly-controlled conventional Buck converter.
The third contribution is a digital implementation of the aforementioned “charge balance control” concept. Through digital implementation the control law is extended to include load-line regulation. Unlike previous work, large lookup tables are not required to perform complex mathematical functions, thus the number of required gates is significantly reduced.
The final contribution is a digital implementation of the “charge balance controller” capable of operating with the previously-mentioned auxiliary circuit. This complete solution is capable of improving the voltage deviation caused by loading and unloading transients. In addition, the combined auxiliary circuit and control law is extended to load-line regulation applications. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2010-01-31 23:01:24.606
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5418 |
Date | 01 February 2010 |
Creators | Meyer, Eric David |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | 8798075 bytes, application/pdf |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0016 seconds